TIMEEVENT DESCRIPTIONLOCATIONIMAGES

UNIVERSE
1,000,000,000,000 YBN
1)
FOOTNOTES
1. ^ Ted Huntington.
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

990,000,000,000 YBN
2)
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

980,000,000,000 YBN
3)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
9. ^ Ted Huntington.
10. ^ Ted Huntington.
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

970,000,000,000 YBN
11)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

960,000,000,001 YBN
5)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

950,000,000,000 YBN
6) Light particles become trapped with
each other and so form structures such
as protons, atoms, molecules, planets,
stars, galaxies, and clusters of
galaxies.9

This forming of light particles into
atoms may be the result of particle
collision, gravitation (an attraction
of matter with itself) or a combination
of both.10
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington
9. ^ Ted Huntington.
10. ^ Ted Huntington
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

940,000,000,000 YBN
7) All of the billions of galaxies we
see are only a tiny part of the
universe. We will never see most of the
universe because no light particles
from there can ever reach us.9

Most galaxies are too far away for even
one particle of light they emit to be
going in the exact direction of our
tiny location, and all the light
particles they emit are captured by
atoms in between there and here.10

One estimate has 70e21 (sextillion)
stars in only the universe we can see.
That is 10 times more stars than grains
of sand on all the earth.11

As telescopes grow larger, the number
of galaxies we see will increase.12
FOO
TNOTES
1. ^ Ted Huntington
2. ^ Ted Huntington
3. ^ Ted Huntington
4. ^ Ted
Huntington
5. ^ Ted Huntington.
6. ^ Ted Huntington
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
9. ^ Ted Huntington
10. ^ Ted Huntington.
11. ^
http://edition.cnn.com/2003/TECH/space/0
7/22/stars.survey/

12. ^ Ted Huntington.

MORE INFO
[1] Carl Sagan, "Cosmos", Carl
Sagan Productions, KCET Los Angeles,
(1980). (estimate of how many galaxies)
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

935,000,000,000 YBN
4) There is a pattern in the universe.
Light particles move from highly dense
volumes of space to volumes of less
density. In low density volumes, light
particles slowly accumulate to form
atoms of Hydrogen and Helium which
exist as gas clouds (like the
Magellanic Clouds or Orion nebula).
These gas clouds, called nebulae
continue to accumulate trapped light
particles. At points of high density
planets and stars form and the cloud is
eventually dense enough to become a
galaxy of stars. The stars emit light
particles back out to the rest of the
universe, where the light again becomes
trapped and forms new clouds. Around
each star are many planets and pieces
of matter. On many of the planets
rotating around stars, living objects
evolve that can copy themselves by
converting matter around them into more
of them. Living objects need matter to
replace matter lost from the constant
emitting of light particles (decay).
Like bacteria, these living objects
grow in number, with the most
successful organisms occupying and
moving around many stars. These
advanced organisms then move the groups
of stars they control, as a globular
cluster, away from the plane of the
spiral galaxy. As time continues, all
of the stars of a galaxy are occupied
by living objects who have organized
their stars into globular clusters, and
these globular clusters together, form
a globular galaxy. The globular galaxy
may then exist for a long time living
off the matter emitting from stars, in
addition to the accumulation of light
particles from external sources.

So free light particles are trapped
into volumes of space that grow in
density first forming atoms, then gas
clouds, then stars, a spiral galaxy,
and finally a globular galaxy.7

Stars at our scale may be light
particles at a much larger scale, just
as light particles at our scale may be
stars at a much smaller scale. This
system may go on infinitely in both
larger and smaller scale.

For any given volume of space, there is
a ratio of light particles going in
versus light particles going out. If
more light particles are entering than
exiting the volume has a deficit of
light particles, and so acts as a
vacuum and grows in size, if more
particles are exiting than entering,
the volume is already very dense, has a
surplus of light particles, and is
losing density.8
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
 
[1] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg


[2] LDN 1622: Dark Nebula in
Orion Data: Digitized Sky Survey
(POSS-II), Color Composite: Noel
Carboni Explanation: The silhouette
of an intriguing dark nebula inhabits
this cosmic scene, based on images from
the Palomar Observatory Sky Survey.
Lynds' Dark Nebula (LDN) 1622 appears
against a faint background of glowing
hydrogen gas only easily seen in long
telescopic exposures of the region. LDN
1622 lies near the plane of our Milky
Way Galaxy, close on the sky to
Barnard's Loop - a large cloud
surrounding the rich complex of
emission nebulae found in the Belt and
Sword of Orion. But the obscuring dust
of LDN 1622 is thought to be much
closer than Orion's more famous
nebulae, perhaps only 500 light-years
away. At that distance, this 1 degree
wide field of view would span less than
10 light-years. PD
source: http://apod.nasa.gov/apod/image/
0705/ldn1622_carboni.jpg

930,000,000,000 YBN
8) An expanding universe seems unlikely
to me. The supposed red-shifted calcium
absorption lines may be a mistaken
observation, for one reason because of
the different sizes of spectra as
clearly seen in the 1936 Humason image7
, and because distance of light source
changes the position, but not the
frequency of spectra8 .

Beyond this, the claim of a "background
radiation" is probably simply low
frequencies of light particles from
light sources that are close enough to
be detected. Most light sources are too
far away for even one particle emitted
from them to reach us.9
FOOTNOTES
1. ^ Humason, M. L., "The Apparent
Radial Velocities of 100 Extra-Galactic
Nebulae", Astrophysical Journal, vol.
83, p.10, Jan
1936. http://articles.adsabs.harvard.ed
u//full/1936ApJ....83...10H/0000010.000.
html

2. ^ Ted Huntington, "Spectral line
position depends on distance of light
source - Bragg Equation Effect",
04/03/2012. http://tedhuntington.com/pa
per_Bragg.htm

3. ^ Humason, M. L., "The Apparent
Radial Velocities of 100 Extra-Galactic
Nebulae", Astrophysical Journal, vol.
83, p.10, Jan
1936. http://articles.adsabs.harvard.ed
u//full/1936ApJ....83...10H/0000010.000.
html

4. ^ Ted Huntington, "Spectral line
position depends on distance of light
source - Bragg Equation Effect",
04/03/2012. http://tedhuntington.com/pa
per_Bragg.htm

5. ^ Humason, M. L., "The Apparent
Radial Velocities of 100 Extra-Galactic
Nebulae", Astrophysical Journal, vol.
83, p.10, Jan
1936. http://articles.adsabs.harvard.ed
u//full/1936ApJ....83...10H/0000010.000.
html

6. ^ Ted Huntington, "Spectral line
position depends on distance of light
source - Bragg Equation Effect",
04/03/2012. http://tedhuntington.com/pa
per_Bragg.htm

7. ^ Humason, M. L., "The Apparent
Radial Velocities of 100 Extra-Galactic
Nebulae", Astrophysical Journal, vol.
83, p.10, Jan
1936. http://articles.adsabs.harvard.ed
u//full/1936ApJ....83...10H/0000010.000.
html

8. ^ Ted Huntington, "Spectral line
position depends on distance of light
source - Bragg Equation Effect",
04/03/2012. http://tedhuntington.com/pa
per_Bragg.htm

9. ^ Humason, M. L., "The Apparent
Radial Velocities of 100 Extra-Galactic
Nebulae", Astrophysical Journal, vol.
83, p.10, Jan
1936. http://articles.adsabs.harvard.ed
u//full/1936ApJ....83...10H/0000010.000.
html

 
[1] Image of a spectral line shift from
a close and distant fluorescent
lamp. GNU
source: Ted Huntington


[2] The simple trigonometry that shows
that two light sources at different
distances cannot achieve the same angle
at the same location on a horizontal
diffraction grating. GNU
source: Ted Huntington

920,000,000,000 YBN
9) Quasars may be very distant regular
galaxies.

  
910,000,000,000 YBN
10) Globular clusters and elliptical
galaxies may be made by intelligent
life, and spiral galaxies formed
without the direct help of living
objects. The star types are almost all
long lived yellow stars, and there is
little or no Hydrogen or Helium "dust"
as there are in spiral galaxies. The
stars in elliptical galaxies are light
weeks apart, much closer together than
our star which is 4 light years to the
closest star system. Life orbiting any
star of a spiral galaxy probably would
leave the plane of the galaxy by going
up or down.

  
890,000,000,000 YBN
12) How photons form atoms may still be
unknown. Perhaps simply from
gravitational attraction, or maybe
there need to be large groups of
photons to limit available spaces for
photons to move in (for example in
stars, or galactic centers, and or
supernovas.

  
870,000,000,000 YBN
14) Photons take on a variety of shapes
at different scales from the smallest
forms in light, up to atoms, molecules,
molecule groups (like living objects),
planets, stars, galaxies, galactic
clusters and the visible universe is
the largest formation of photons we can
see.

  

LIFE
165,000,000,000 YBN
13)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
 
[1] Description This image is
mosaic of multiple shots on
large-format film. It comprises all 360
degrees of the galaxy from our vantage.
Photography was done in Ft. Davis,
Texas for the Northern hemisphere shots
and from Broken Hill, New South Wales,
Australia, for the southern portions.
Note the dust lanes, which obscure our
view of some features beyond them.
Infrared imaging reaches into these
regions, and radio astronomy can look
all the way through with less detail.
The very center, however, shows a
window to the farther side. In the
center, stars are mostly very old and
this causes the more yellow color. The
final file is 1.5GB, and resolves
details of less than one arcminute.
Faintest stars are magnitude 11. There
are 21 pixels of horizontal overlap at
the ends, with the right end slightly
brighter than the corresponding pixels
on the left. Date Source
http://www.digitalskyllc.com (The
image was uploaded to en.wiki at 17:16,
21 September 2006 by Twtunes. Author
Digital Sky LLC CC
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0a/Milkyway_pan1.jpg


[2] note
Hubble_ultra_deep_field_high_rez_edit1
is much larger [2] Hubble ultra deep
field high rez
edit1_small.jpg Deutsch: Das Hubble
Ultra Deep Field ist ein Bild einer
kleinen Himmelsregion aufgenommen vom
Hubble-Weltraumteleskop über einen
Zeitraum vom 3. September 2003 bis 16.
Januar 2004. Dabei wurde eine
Himmelsregion ausgewählt, die kaum
störende helle Sterne im Vordergrund
enthält. Man entschied sich für ein
Zielgebiet südwestlich von Orion im
Sternbild Chemischer Ofen. English:
The Hubble Ultra Deep Field, is an
image of a small region of space in the
constellation Fornax, composited from
Hubble Space Telescope data accumulated
over a period from September 3, 2003
through January 16, 2004. The patch of
sky in which the galaxies reside was
chosen because it had a low density of
bright stars in the
near-field. Español: El Campo Ultra
Profundo del Hubble, es una imagen de
una pequeña región del espacio en la
constelación Fornax, compuesta de
datos obtenidos por el telescopio
espacial Hubble durante el período
entre el 3 de Septiembre de 2003 y el
16 de Enero de 2004. Esta parte del
cielo fue escogida por su baja densidad
de estrellas brillantes en sus
proximidades. Français : Le champ
ultra profond de Hubble, une image
d'une petite portion du ciel dans la
constellation du Fourneau, prise par le
télescope spatial Hubble du 3
septembre 2003 au 16 juillet 2004. La
portion de ciel a été choisie car
elle possède peu d'étoiles brillantes
proches. Date 2003-09-03 -
2004-01-16 Source
http://hubblesite.org/newscenter/ar
chive/releases/2004/07/image/a/warn/ Au
thor NASA and the European Space
Agency. Edited by Noodle snacks PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0d/Hubble_ultra_deep_fie
ld_high_rez_edit1.jpg

33,000,000,000 YBN
6180)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
 
[1] Description English: M8 Lagoon
Nebula in Sagittarius Date 26 June
2009 Source Own
work Author Hewholooks CC
source: http://upload.wikimedia.org/wiki
pedia/commons/2/2f/M8HunterWilson.jpg


[2] NGC 7023: The Iris Nebula Credit
& Copyright: Daniel López,
IAC Explanation: Like delicate cosmic
petals, these clouds of interstellar
dust and gas have blossomed 1,300
light-years away in the fertile star
fields of the constellation Cepheus.
Sometimes called the Iris Nebula and
dutifully cataloged as NGC 7023, this
is not the only nebula in the sky to
evoke the imagery of flowers. Still,
this beautiful digital image shows off
the Iris Nebula's range of colors and
symmetries in impressive detail. Within
the Iris, dusty nebular material
surrounds a hot, young star. The
dominant color of the brighter
reflection nebula is blue,
characteristic of dust grains
reflecting starlight. Central filaments
of the dusty clouds glow with a faint
reddish photoluminesence as some dust
grains effectively convert the star's
invisible ultraviolet radiation to
visible red light. Infrared
observations indicate that this nebula
may contain complex carbon molecules
known as PAHs. As shown here, the
bright blue portion of the Iris Nebula
is about six light-years across. PD
source: http://apod.nasa.gov/apod/image/
1011/IRIS_IAC80_DLopez900c.jpg

22,000,000,000 YBN
6181)
 
[1] close up
of: Description English: M8 Lagoon
Nebula in Sagittarius Date 26 June
2009 Source Own
work Author Hewholooks CC
source: http://upload.wikimedia.org/wiki
pedia/commons/2/2f/M8HunterWilson.jpg


[2] Description The photograph,
taken by NASA's Hubble Space Telescope,
captures a small region within M17, a
hotbed of star formation. M17, also
known as the Omega or Swan Nebula, is
located about 5500 light-years away in
the constellation Sagittarius. The
wave-like patterns of gas have been
sculpted and illuminated by a torrent
of ultraviolet radiation from young,
massive stars, which lie outside the
picture to the upper left. The glow of
these patterns accentuates the
three-dimensional structure of the
gases. The ultraviolet radiation is
carving and heating the surfaces of
cold hydrogen gas clouds. The warmed
surfaces glow orange and red in this
photograph. The intense heat and
pressure cause some material to stream
away from those surfaces, creating the
glowing veil of even hotter greenish
gas that masks background structures.
The pressure on the tips of the waves
may trigger new star formation within
them. The image, roughly 3
light-years across, was taken May
29-30, 1999, with the Wide Field
Planetary Camera 2. The colors in the
image represent various gases. Red
represents sulfur; green, hydrogen; and
blue, oxygen. Date 24 April
2003 Source
http://spacetelescope.org/images/html/he
ic0305a.html (direct link)
http://hubblesite.org/newscenter/archive
/releases/2003/13/image/a/ Author
NASA, ESA and J. Hester (ASU) PD
source: http://upload.wikimedia.org/wiki
pedia/commons/7/72/Omega_Nebula.jpg

10,000,000,000 YBN
6182)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
 
[1] Description The globular
cluster Omega Centauri — with as many
as ten million stars — is seen in all
its splendour in this image captured
with the WFI camera from ESO's La Silla
Observatory. The image shows only the
central part of the cluster — about
the size of the full moon on the sky
(half a degree). North is up, East is
to the left. This colour image is a
composite of B, V and I filtered
images. Note that because WFI is
equipped with a mosaic detector, there
are two small gaps in the image which
were filled with lower quality data
from the Digitized Sky Survey. Date
2008 Source
http://www.eso.org/public/outreach/
press-rel/pr-2008/phot-44-08.html Autho
r ESO CC
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/e/e6/Omega_Centauri_
by_ESO.jpg/638px-Omega_Centauri_by_ESO.j
pg


[2] Description This image is
mosaic of multiple shots on
large-format film. It comprises all 360
degrees of the galaxy from our vantage.
Photography was done in Ft. Davis,
Texas for the Northern hemisphere shots
and from Broken Hill, New South Wales,
Australia, for the southern portions.
Note the dust lanes, which obscure our
view of some features beyond them.
Infrared imaging reaches into these
regions, and radio astronomy can look
all the way through with less detail.
The very center, however, shows a
window to the farther side. In the
center, stars are mostly very old and
this causes the more yellow color. The
final file is 1.5GB, and resolves
details of less than one arcminute.
Faintest stars are magnitude 11. There
are 21 pixels of horizontal overlap at
the ends, with the right end slightly
brighter than the corresponding pixels
on the left. Date Source
http://www.digitalskyllc.com (The
image was uploaded to en.wiki at 17:16,
21 September 2006 by Twtunes. Author
Digital Sky LLC CC
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0a/Milkyway_pan1.jpg

5,500,000,000 YBN
11
16)
FOOTNOTES
1. ^ Ted Huntington
2. ^ Ted Huntington
3. ^ Ted Huntington
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington
7. ^ Ted Huntington
8. ^
http://zebu.uoregon.edu/~imamura/208/mar
1/nucleo.html
(with image of onion
skin layers)
9. ^ Ted Huntington
10. ^ another person
declares star inside to be similar to
planets: iron, oxygen, nickel, etc. do
not support standard solar
model. star_inside_iron.pdf
11. ^ Ted Huntington, guess
 
[1] Description English: The Sun
photographed by the Atmospheric Imaging
Assembly (AIA 304) of NASA's Solar
Dynamics Observatory (SDO). This is
a false color image of the sun observed
in the extreme ultraviolet region of
the spectrum. For example,similar
image Français : Le soleil,
photographié depuis le Solar Dynamics
Observatory de la NASA. Date
2010-08-19T00:32:21Z (ISO
8601) Source NASA/SDO
(AIA). Author NASA/SDO (AIA). PD

source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/b/b4/The_Sun_by_the_
Atmospheric_Imaging_Assembly_of_NASAs_So
lar_Dynamics_Observatory_-_20100819.jpg/
628px-The_Sun_by_the_Atmospheric_Imaging
_Assembly_of_NASAs_Solar_Dynamics_Observ
atory_-_20100819.jpg


[2] Summary Description The star
formation region N11B in the LMC taken
by WFPC2 on the NASA/ESA Hubble Space
Telescope. Date Source
http://www.spacetelescope.org/image
s/html/heic0411a.html Author
NASA/ESA and the Hubble Heritage
Team
(AURA/STScI)/HEIC Permission (Reusing
this file) ESA Public Domain, as
per
http://www.spacetelescope.org/copyright.
html PD
source: http://upload.wikimedia.org/wiki
pedia/commons/6/6c/Heic0411a.jpg

5,000,000,000 YBN
22) In a star system, because of
gravitation, heavier masses move closer
to the center and lighter masses move
farther out.4
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
 
[1] Distribution of mass from Newtonian
gravitation after 4
minutes: Blue=high mass Green=medium
mass Red=low mass GNU
source: Ted Huntington

4,600,000,000 YBN
17)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
 
[1] an 19, 2005 � For the past five
days, forecasters at the NOAA Space
Environment Center in Boulder, Colo.,
have observed all types of space
weather: radio blackouts, solar
radiation storms and geomagnetic
storms. Currently, space weather
forecasters are observing a moderate
geomagnetic storm (G-2 on the NOAA
Space Weather Scales) and a minor (S-1)
solar radiation storm. Earlier
Wednesday an X-class flare produced a
strong (R-3) radio blackout. (Click
image for larger view of the sun taken
on Jan. 19, 2005, at 2:19 p.m. EST.
Click here for high resolution version,
which is a large file. Please credit
European Space Agency-NASA.) PD
source: http://www.noaanews.noaa.gov/sto
ries2005/images/sun-soho011905-1919z.jpg

4,600,000,000 YBN
30)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
 
[1] Image of moon superimposed on
Venus PD
source: http://upload.wikimedia.org/wiki
pedia/commons/d/dd/Full_Moon_Luc_Viatour
.jpg


[2] an 19, 2005 � For the past five
days, forecasters at the NOAA Space
Environment Center in Boulder, Colo.,
have observed all types of space
weather: radio blackouts, solar
radiation storms and geomagnetic
storms. Currently, space weather
forecasters are observing a moderate
geomagnetic storm (G-2 on the NOAA
Space Weather Scales) and a minor (S-1)
solar radiation storm. Earlier
Wednesday an X-class flare produced a
strong (R-3) radio blackout. (Click
image for larger view of the sun taken
on Jan. 19, 2005, at 2:19 p.m. EST.
Click here for high resolution version,
which is a large file. Please credit
European Space Agency-NASA.) PD
source: http://www.noaanews.noaa.gov/sto
ries2005/images/sun-soho011905-1919z.jpg

4,600,000,000 YBN
7
50)
FOOTNOTES
1. ^ "Hadean Time." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 03
Mar. 2012.
http://www.answers.com/topic/hadean-time

2. ^
http://www.geosociety.org/science/timesc
ale/

3. ^ "Hadean Time." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 03
Mar. 2012.
http://www.answers.com/topic/hadean-time

4. ^
http://www.geosociety.org/science/timesc
ale/

5. ^ "Hadean Time." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 03
Mar. 2012.
http://www.answers.com/topic/hadean-time

6. ^
http://www.geosociety.org/science/timesc
ale/

7. ^ "Divisions of Geologic Time",
2010,
USGS http://pubs.usgs.gov/fs/2010/3059/
pdf/FS10-3059.pdf

 
[1] Geologic Time Scale 2009 UNKNOWN
source: http://www.geosociety.org/scienc
e/timescale/timescl.pdf

4,571,000,000 YBN
5 6
31)
FOOTNOTES
1. ^
http://www.sciencemag.org/cgi/content/fu
ll/288/5472/1819?maxtoshow=&HITS=10&hits
=10&RESULTFORMAT=&fulltext=zag+morocco&s
earchid=1129920472874_9236&stored_search
=&FIRSTINDEX=0#RF2

2. ^
http://news.bbc.co.uk/1/hi/sci/tech/7830
48.stm

3. ^
http://www.sciencemag.org/cgi/content/fu
ll/288/5472/1819?maxtoshow=&HITS=10&hits
=10&RESULTFORMAT=&fulltext=zag+morocco&s
earchid=1129920472874_9236&stored_search
=&FIRSTINDEX=0#RF2

4. ^
http://news.bbc.co.uk/1/hi/sci/tech/7830
48.stm

5. ^
http://www.sciencemag.org/cgi/content/fu
ll/288/5472/1819?maxtoshow=&HITS=10&hits
=10&RESULTFORMAT=&fulltext=zag+morocco&s
earchid=1129920472874_9236&stored_search
=&FIRSTINDEX=0#RF2
(4.7 +- .2 billion
years)
6. ^ sci has 4.7 +- .2 by where did
4.571 come from?
 
[1] The ''Zag'' meteorite fell to Earth
in 1988 COPYRIGHTED
source: http://news.bbc.co.uk/1/hi/sci/t
ech/783048.stm

4,566,000,000 YBN
32) Allende Meteorite 4,566 million
years old.

  
4,530,000,000 YBN
33)
FOOTNOTES
1. ^
http://www.nasm.si.edu/exhibitions/attm/
atmimages/S73-15446.f.jpg

http://www.nasm.si.edu/exhibitions/attm/
nojs/wl.br.1.html
2. ^
http://www.nasm.si.edu/exhibitions/attm/
atmimages/S73-15446.f.jpg

http://www.nasm.si.edu/exhibitions/attm/
nojs/wl.br.1.html
 
[1]
http://www.nasm.si.edu/exhibitions/attm/
atmimages/S73-15446.f.jpg
http://www.nasm.si.edu/exhibitions/attm/
nojs/wl.br.1.html
source:

4,450,000,000 YBN
21)
FOOTNOTES
1. ^ part about rain and streams going
to bottom of land:
http://www.ersdac.or.jp/Others/geoessay_
htm/geoessay_e/geo_text_09_e.htm

2. ^ part about rain and streams going
to bottom of land:
http://www.ersdac.or.jp/Others/geoessay_
htm/geoessay_e/geo_text_09_e.htm

3. ^ part about rain and streams going
to bottom of land:
http://www.ersdac.or.jp/Others/geoessay_
htm/geoessay_e/geo_text_09_e.htm

4. ^ part about rain and streams going
to bottom of land:
http://www.ersdac.or.jp/Others/geoessay_
htm/geoessay_e/geo_text_09_e.htm

 
[1] USGS Photo by Tim Orr Pahoehoe
lava breaks out of the crust along a
flow margin PD
source: http://www.nps.gov/havo/parkmgmt
/upload/havo_manage_usgs_20080304_tro381
7_x800.jpg


[2] English: Ultraviolet image of
Venus' clouds as seen by the Pioneer
Venus Orbiter (February 26, 1979). The
immense C- or Y-shaped features which
are visible only in these wavelengths
are individually short lived, but
reform often enough to be considered a
permanent feature of Venus' clouds. The
mechanism by which Venus' clouds absorb
ultraviolet is not well understood. PD

source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/b/bc/Venuspioneeruv.
jpg/953px-Venuspioneeruv.jpg

4,404,000,000 YBN
34) Oldest "terrestrial" zircon;
evidence that the crust and liquid
water are on the surface of earth. A
terrestrial zircon is not from a
meteorite. This zircon if from Gneiss
in West Australia that is 4.4 billion
years old.4
FOOTNOTES
1. ^
http://www.nature.com/nature/links/01011
1/010111-1.html

2. ^
http://www.nature.com/nature/links/01011
1/010111-1.html

3. ^
http://www.nature.com/nature/links/01011
1/010111-1.html

4. ^
http://www.nature.com/nature/links/01011
1/010111-1.html

 
[1]
http://www.geology.wisc.edu/zircon/Earli
est%20Piece/Images/8.jpg
source:

4,400,000,000 YBN
18) Larger molecules like amino acids,
phosphates and sugars, the components
of living objects, form on Earth.8

These molecules are made in the oceans,
fresh water, and atmosphere of earth
(and other planets) by lightning, light
particles with ultraviolet frequency
from the Sun, and from ocean floor
volcanoes.9
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
9. ^ Ted Huntington.
 
[1] The two optical isomers of alanine,
D-Alanine and
L-Alanine D-glucose BOTH PD
source: http://upload.wikimedia.org/wiki
pedia/commons/6/65/D%2BL-Alanine.gif
and http://upload.wikimedia.org/wikiped
ia/commons/thumb/5/5a/D-glucose-chain-3D
-balls.png/640px-D-glucose-chain-3D-ball
s.png

4,395,000,000 YBN
19) Nucleic acids form on Earth. One of
these RNA molecules may be the ancestor
of all of life on Earth, being part of
the series of copies that leads to all
later living objects on Earth.12

Even if bacteria survived the journey
from a different star to this star and
seeded the earth, the chemical
evolution of the first cell is
necessary somewhere in the universe.13


The initial building blocks of living
objects are very easy to produce, but
the next step is more difficult:
assembling the simple building blocks
into longer-chain molecules, or
polymers. Amino acids link up to form
longer polymers called proteins, simple
fatty acids plus alcohols link up to
form lipids (oils and fats), simple
sugars like glucose and sucrose link
together to form complex carbohydrates
and starches, and finally, the
nucleotide bases (plus phosphates and
sugars) link up to form nucleic acids,
the genetic code of organisms, known as
RNA and DNA.14

How nucleic acids (polymers made of
nucleotides), proteins (polymers made
of amino acids), carbohydrates
(polymers made of sugars) and lipids
(glycerol attached to fatty acids)
evolved is not clearly known. Possibly
all proteins, carbohydrates and lipids
are strictly the products of living
objects.15

Some proteins and nucleic acids have
been formed in labs by using clay which
can dehydrate and which provides long
linear crystal structures to build
proteins and nucleic acids on. Amino
acids join together to form
polypeptides when an H2O molecule is
formed from a Hydrogen (H) on 1 amino
acid and a hydroxyl (OH) on the
second.16

Perhaps proteins, carbohydrates, lipids
and DNA are the products of living
objects, with RNA being made without
the help of living objects.17

The most popular theory now has RNA
(and potentially lipids) evolving first
before any living objects.18 But
perhaps proteins evolved first, and a
protein linked together the first
nucleic acid.19

A bacteria can survive the trip between
two stars, and possibly a eukaryote
cell could survive frozen and be waken
up again many years later, but it seems
unlikely that a multicellular
eukaryotic organism could survive and
be revived from one star to another.20


Probably bacteria from a variety of
stars lands on all planets and
asteroids, and is revived on many where
the temperature allows them to copy.21


There is still a large amount of
experiment, exploration and education
that needs to be done to understand the
origins of living objects on planet
earth.22
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Donald
Prothero, "Evolution What the Fossils
Say and Why It Matters", 2007, p150.
5. ^ Ted
Huntington.
6. ^ Ted Huntington.
7. ^ Donald Prothero,
"Evolution What the Fossils Say and Why
It Matters", 2007, p150.
8. ^ Ted Huntington.
9. ^ Ted
Huntington.
10. ^ Donald Prothero, "Evolution What
the Fossils Say and Why It Matters",
2007, p150.
11. ^ Ted Huntington.
12. ^ Ted Huntington.
13. ^ Ted
Huntington.
14. ^ Donald Prothero, "Evolution What
the Fossils Say and Why It Matters",
2007, p150.
15. ^ Ted Huntington.
16. ^ Ted Huntington.
17. ^ Ted
Huntington.
18. ^ Ted Huntington.
19. ^ Ted Huntington.
20. ^ Ted
Huntington.
21. ^ Ted Huntington.
22. ^ Ted Huntington.
 
[1] Ribonucleic acid (English
pronunciation:
/raɪbɵ.njuːˌkleɪ.ɨk ˈæsɪd/),
or RNA, is one of the three major
macromolecules (along with DNA and
proteins) that are essential for all
known forms of life. UNKNOWN
source: http://dna-rna.net/wp-content/up
loads/2011/07/rna.jpg

4,390,000,000 YBN
25) An RNA molecule may evolve that can
copy other RNA molecules.7

Perhaps RNA molecules, called
"ribozymes" evolve which can make
copies of RNA, by connecting free
floating nucleotides that match a
nucleotide on the same or a different
RNA, much like tRNA do in assembling
amino acids into proteins. But until
such ribozyme RNA molecules are found,
the only molecule known to copy nucleic
acids are proteins called polymerases.8


These early RNA molecules may have been
protected by liposomes (spheres of
lipids).9

This process of RNA (and then later
DNA) duplication is the most basic
aspect of life on Earth, and for all
the diversity, the one common element
of all life is this constant process of
DNA duplication, which will later
evolve to include cell division. This
starts the unbroken thread of copying
and division that connects the earliest
ancestor, perhaps some RNA molecule, to
all life on earth that has ever
lived.10

This may be the start of the constant
conversion of other matter into nucleic
acids. This constant copying will
ultimately result in billions of living
objects on earth.11
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
9. ^ Ted Huntington.
10. ^ Ted Huntington.
11. ^ Ted
Huntington.
 
[1] Description Full-Length
Hammerhead Ribozyme color-coded so that
the 5'-end of each RNA strand is blue
and the 3'-end is red. The individual
nucleotides are represented as
toothpicks, and the phosphodiester
backbone as a narrow tube. From
Protein Data Bank ID 2GOZ. Date
17 June 2007 Source Own
work Author William G.
Scott GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/2/28/Full_length_hammerhea
d_ribozyme.png

4,385,000,000 YBN
167) The first proteins on Earth.
Transfer RNA molecules evolve (tRNA),
and link amimo acids into proteins
using other RNA molecules (mRNA) as a
template.

For the first time, a nucleic acid
functions both as a template for
building other nucleic acid molecules,
and also as a template for building
proteins (with the help of tRNA
molecules).13

This protein assembly system is the
main system responsible for all the
proteins on Earth.14

Whether the first tRNA and protein
assembly evolved before or after the
evolution of the ribosome is currently
unknown.15

Random mutations in the copying (and
perhaps even in the natural formation)
of RNA molecules probably creates a
number of the necessary tRNAs (tRNA,
are RNA molecules responsible for
matching free floating amino acid
molecules to three-nucleotide sequences
on other RNA molecules).16

This is a precellular, pre-ribosome
protein assembly system, where tRNA
(transfer RNA) molecules build
polypeptide chains of amino acids by
linking directly to other RNA
strands.17

Part of each tRNA molecule bonds with a
specific amino acid, and a 3 nucleotide
sequence from a different part of the
tRNA molecule bonds with the opposite
matching 3 nucleotide sequence on an
mRNA molecule.18

Since there are tRNA molecules for each
amino acid (although some tRNAs can
attach to more than one amino acid),
there must have been a slow
accumulation of various tRNA molecules
for each of the 20 amino acids used in
constructing polypeptides in cells
living now. Perhaps after the evolution
of the first tRNA, the first
polypeptides were chains of all the
same one amino acid. With the evolution
of a second tRNA polypeptides would
have more variety because now two amino
acids would be available to build
polypeptides.19

This polypeptide assembly system may
exist freely in water, or within a
liposome20 . This system builds many
more proteins than would be built
without such a system. The mRNA with
the code to make copier RNA, now also
contains the code to produce various
tRNA molecules. These molecules
function as a unit, and proto-cell,
with the rest of the mRNA initially
containing random codes for random
proteins.21
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
9. ^ Ted Huntington.
10. ^ Ted Huntington.
11. ^ Ted
Huntington.
12. ^ Ted Huntington.
13. ^ Ted Huntington.
14. ^ Ted
Huntington.
15. ^ Ted Huntington.
16. ^ Ted Huntington.
17. ^ Ted
Huntington.
18. ^ Ted Huntington.
19. ^ Ted Huntington.
20. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005). supports liposome
theory
21. ^ Ted Huntington.
 
[1] Source : ''Role of the
Ribosome'' University of Texas Medical
Branch UNKNOWN
source: http://ead.univ-angers.fr/~jaspa
rd/Page2/COURS/7RelStructFonction/2Bioch
imie/1SyntheseProteines/3Figures/4Organi
tes/2Ribosomes/6Polysome.gif

4,380,000,000 YBN
168) The ribosome evolves. First
Ribosomal RNA (rRNA).

The ribosome may function as a
protocell, providing a platform for
more efficient protein production. A
single RNA may contain all the
instructions needed to make more
ribosomes.

Ribosomes are the cellular organelles
that carry out protein synthesis,
through a process called translation.
They are found in both prokaryotes and
eukaryotes. These molecular machines
are responsible for accurately
translating the linear genetic code on
the messenger RNA (mRNA), into a linear
sequence of amino acids to produce a
protein. All cells contain ribosomes
because growth requires the continued
synthesis of new proteins. Ribosomes
can exist in great numbers, ranging
from thousands in a bacterial cell to
hundreds of thousands in some human
cells and hundreds of millions in a
frog ovum. Ribosomes are also found in
mitochondria and chloroplasts.5

This early ribosome may function as a
protocell, holding an mRNA molecule
which is used as a template by tRNA
molecules to assemble amino acids into
proteins. A single mRNA molecule may
contain the instructions for an RNA
polymerase and for all the necessary
rRNA, and tRNA molecules needed to make
more ribosomes.

This ribosomal RNA may serve as an
early ribosome. As time continues the
ribosome will grow to include two more
RNA molecules, some protein molecules,
and a second half that will make
polypeptide construction more
efficient.6

The modern ribosome is a large
ribonucleoprotein (RNA-protein)
complex, roughly 20 to 30 nanometers in
diameter. It is formed from two
unequally sized subunits, referred to
as the small subunit and the large
subunit. The two subunits of the
ribosome must join together to become
active in protein synthesis. However,
they have distinguishable functions.
The small subunit is involved in
decoding the genetic information, while
the large subunit has the catalytic
activity responsible for peptide bond
formation (that is, the joining of new
amino acids to the growing protein
chain).7
FOOTNOTES
1. ^ "ribosome." Genetics. The Gale
Group, Inc, 2003. Answers.com 28 Nov.
2011.
http://www.answers.com/topic/ribosome
2. ^ "ribosome." Genetics. The Gale
Group, Inc, 2003. Answers.com 28 Nov.
2011.
http://www.answers.com/topic/ribosome
3. ^ "ribosome." Genetics. The Gale
Group, Inc, 2003. Answers.com 28 Nov.
2011.
http://www.answers.com/topic/ribosome
4. ^ Ted Huntington.
5. ^ "ribosome." Genetics. The
Gale Group, Inc, 2003. Answers.com 28
Nov. 2011.
http://www.answers.com/topic/ribosome
6. ^ Ted Huntington.
7. ^ "ribosome." Genetics. The
Gale Group, Inc, 2003. Answers.com 28
Nov. 2011.
http://www.answers.com/topic/ribosome
 
[1] Description English:
Illustration of tRNA building peptide
chain Date 1 March 2009 Source
Own work Author
Boumphreyfr CC
source: http://upload.wikimedia.org/wiki
pedia/commons/0/0f/Peptide_syn.png


[2] Source : ''Role of the
Ribosome'' University of Texas Medical
Branch UNKNOWN
source: http://ead.univ-angers.fr/~jaspa
rd/Page2/COURS/7RelStructFonction/2Bioch
imie/1SyntheseProteines/3Figures/4Organi
tes/2Ribosomes/6Polysome.gif

4,370,000,000 YBN
40) A protein can copy RNA. This
protein is called an RNA polymerase,
and may be more efficient than RNA
itself, at copying other RNA molecules,
or may be the first molecule that can
copy RNA.

An RNA polymerase must have been one of
the first useful proteins to be
assembled by the early (presumably)
precellular protein production system.
Eventually an mRNA that codes for the
necessary tRNA, and RNA polymerase may
be copied many times.
 
[1] RNA is a versatile molecule. In its
most familiar role, RNA acts as an
intermediary, carrying genetic
information from the DNA to the
machinery of protein synthesis. RNA
also plays more active roles,
performing many of the catalytic and
recognition functions normally reserved
for proteins. In fact, most of the RNA
in cells is found in ribosomes--our
protein-synthesizing machines--and the
transfer RNA molecules used to add each
new amino acid to growing proteins. In
addition, countless small RNA molecules
are involved in regulating, processing
and disposing of the constant traffic
of messenger RNA. The enzyme RNA
polymerase carries the weighty
responsibility of creating all of these
different RNA molecules. The RNA
Factory RNA polymerase is a huge
factory with many moving parts. The one
shown here, from PDB entry 1i6h, is
from yeast cells. It is composed of a
dozen different proteins. Together,
they form a machine that surrounds DNA
strands, unwinds them, and builds an
RNA strand based on the information
held inside the DNA. Once the enzyme
gets started, RNA polymerase marches
confidently along the DNA copying RNA
strands thousands of nucleotides
long. Accuracy As you might expect,
RNA polymerase needs to be accurate in
its copying of genetic information. To
improve its accuracy, it performs a
simple proofreading step as it builds
an RNA strand. The active site is
designed to be able to remove
nucleotides as well as add them to the
growing strand. The enzyme tends to
hover around mismatched nucleotides
longer than properly added ones, giving
the enzyme time to remove them. This
process is somewhat wasteful, since
proper nucleotides are also
occasionally removed, but this is a
small price to pay for creating better
RNA transcripts. Overall, RNA
polymerase makes an error about once in
10,000 nucleotides added, or about once
per RNA strand created. Poisoning
Polymerase Since RNA polymerase is
absolutely essential for the life of
the cell, it is a sensitive target for
poisons and toxins. The most powerful
of these poisons is alpha-amanitin, a
small circular peptide created by the
death cap mushroom. Eating even one of
these mushrooms will lead to coma and
death in a manner of days, as the
poison attacks RNA polymerase
throughout the body. Surprisingly, it
binds on the back side of RNA
polymerase, away from the active site
and away from the binding site for the
DNA and RNA. It does not physically
block the active site, like most
inhibitors, but instead jams the
mechanism of the enzyme. RNA polymerase
is a highly mobile enzyme, that flexes
and changes shape as it performs the
sequential steps of binding to DNA,
unwinding it, and then building the RNA
strand. As seen in PDB entry 1k83, the
poison binds between two subunits of
the protein, gluing them together and
blocking these essential motions. PD
source: http://www.pdb.org/pdb/education
_discussion/molecule_of_the_month/images
/1i6h-composite.gif

4,365,000,000 YBN
166) The first Deoxyribonucleic acid
(DNA) molecule. A protein evolves that
can assemble DNA from RNA.9

This protein, built by a ribosome,
changes ribonucleotides into
deoxyribonucleotides, which allows the
first DNA molecule on Earth to be
assembled.10

Ribonucleotide reductase may be the
molecule that allows DNA to be the
template for the line of cells that
survives to now.11

If RNA and DNA evolved at the same or
different times is not clear yet.
Possibly RNA and DNA were created by
the same process.12
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted
Huntington.
9. ^ Ted Huntington.
10. ^ Ted Huntington.
11. ^ Ted
Huntington.
12. ^ Ted Huntington.
 
[1] Description Crystallographic
structure of the ribonucleotide
reductase protein R1E from Salmonella
typhimurium. The protein is rainbow
colored (N-terminus = blue, C-terminus
= red) while deoxyadenosine
triphosphate is show as sticks and a
complexed magnesium ion as a grey
sphere.[1] ↑ PDB 1PEU; Uppsten M,
Färnegårdh M, Jordan A, Eliasson R,
Eklund H, Uhlin U (June 2003).
''Structure of the large subunit of
class Ib ribonucleotide reductase from
Salmonella typhimurium and its
complexes with allosteric effectors''.
J. Mol. Biol. 330 (1): 87–97. PMID
12818204. Date 28 February
2008 Source Own
work Author Boghog2 PD
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/e/e3/1PEU_R1E.png/10
24px-1PEU_R1E.png


[2] Description English: The
reaction mechanism of ribonucleotide
reductase Date 14 January 2006
(original upload
date) Source Transferred from
en.wikipedia; transferred to Commons by
User:Michał Sobkowski using
CommonsHelper. Author Original
uploader was BorisTM at
en.wikipedia PD
source: http://upload.wikimedia.org/wiki
pedia/commons/2/2c/RNR_reaction.png

4,360,000,000 YBN
212) A protein can copy DNA molecules,
a DNA polymerase.
 
[1] These simple DNA polymerases are
shaped roughly like a hand. Both are
from bacteria: on the left is the
enzyme from Escherichia coli, PDB entry
1kln, and on the right is the enzyme
from Thermus aquaticus, PDB entry 1tau.
A cleaved version of the E. coli enzyme
was studied: the missing part, which
you will not find in the PDB file, is
shown with a green outline. The space
between the ''fingers'' and the
''thumb'' is just the right size for a
DNA helix. But surprisingly, DNA
actually fits into the palm when the
enzyme is at work. In these pictures,
the template strand is colored purple
and the new strand is colored green.
The enzyme contains three separate
active sites. The polymerase site, near
the top in these pictures, synthesizes
the new strand by adding nucleotides.
The 3'-5' exonuclease site, near the
center in the E. coli polymerase,
proofreads the new additions. The
polymerase from Thermus aquaticus does
not have this proofreading
ability--perhaps the heat in which it
lives performs the same function. At
the bottom is the 5' exonuclease site
that later removes the small RNA
fragments that are used to prime DNA
replication. These illustrations were
created with RasMol. You can create
similar pictures by clicking on the
accession codes, and then hitting
''View Structure.'' PD
source: http://www.pdb.org/pdb/education
_discussion/molecule_of_the_month/images
/pol_active.gif

4,355,000,000 YBN
20) The first cell on earth (a
bacterium). DNA is surrounded by a
membrane of proteins made by ribosomes.
The first cytoplasm.22

This cell may form in either fresh or
salt water, near the sunlit water
surface or near underwater volcanoes on
the ocean floor.23

Binary fission evolves. A protein
duplicates DNA within the cell and then
the cell divides into two parts.24

Procaryotes reproduce by binary
fission. The chromosome begins to
replicate at a specific place on the
chromosome called the "origin of
replication" producing two origins. As
the chromosome continues to replicate,
one origin moves rapidly toward to
opposite end of the cell. While the
chromosome is replicating, the cell
grows longer. When replication is
complete and the bacterium has reached
about twice its initial size, its
plasma membrane grows inward, dividing
the parent cell into two child cells,
each with a complete genome.25

The DNA of this cell contains the
template for itself: a copying molecule
(DNA polymerase), and the necessary
mRNA, tRNA, and rRNA molecules needed
to build the cytoplasm. For the first
time, ribosomes and DNA build cell
structure. DNA protected by cytoplasm
is more likely to survive and be
copied. Copies of this cell also have
cytoplasm.26

This cell structure forms the basis of
all future cells of every living object
on earth. These first cells are
probably anaerobic (do not require free
oxygen) and heterotrophic, meaning that
they do not make their own food: amino
acids, nucleotides, phosphates, and
sugars. These early bacteria depend on
obtaining external sources of these
molecules and light particles in the
form of heat to reproduce and grow.27

Amino acids, nucleotides, water, and
other molecules enter and exit the
cytoplasm only because of a difference
in concentration from inside and
outside the cell (passive transport)
and represent the beginnings of the
first digestive system.

This membrane forms the first
protective barrier between for DNA and
the external universe, and serves as a
container to hold water.28

Two important evolutionary steps
evolve: DNA duplication in cytoplasm,
and cell (DNA with cytoplasm) division.
Not only must the DNA copy and divide,
but the cell membrane must divide
too.29

A system of division may evolve which
attaches the original and newly
synthesized copy of DNA to the
cytoplasm, so that as the cell grows,
the two copies of DNA can be separated
and the first membraned cells can
divide into two cells.30

The process of DNA duplication is
probably similar if not the same
process using the same proteins that
were used to duplicate DNA without
cytoplasm.31

It is possible that bacteria could
arrive on Earth from some other star,
or even from a different galaxy and be
the ancestor of all life on Earth.32
FO
OTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Prothero,
"Evolution: What the Fossils Say and
Why It Matters", 2007, p145-154.
4. ^ Ted
Huntington.
5. ^ Prothero, "Evolution: What the
Fossils Say and Why It Matters", 2007,
p145-154.
6. ^ Ted Huntington.
7. ^ Ted Huntington.
8. ^ Ted Huntington.
9. ^ Ted
Huntington.
10. ^ Prothero, "Evolution: What the
Fossils Say and Why It Matters", 2007,
p145-154.
11. ^ Ted Huntington.
12. ^ Ted Huntington.
13. ^ Ted
Huntington.
14. ^ Ted Huntington.
15. ^ Prothero, "Evolution:
What the Fossils Say and Why It
Matters", 2007, p145-154.
16. ^ Ted Huntington.
17. ^ Ted
Huntington.
18. ^ Ted Huntington.
19. ^ Ted Huntington.
20. ^ Ted
Huntington.
21. ^ Ted Huntington.
22. ^ Ted Huntington.
23. ^ Prothero,
"Evolution: What the Fossils Say and
Why It Matters", 2007, p145-154.
24. ^ Ted
Huntington.
25. ^ Campbell, Reece, et al,
"Biology", 8th Edition, 2008, p236.
26. ^ Ted
Huntington.
27. ^ Ted Huntington.
28. ^ Ted Huntington.
29. ^ Ted
Huntington.
30. ^ Ted Huntington.
31. ^ Ted Huntington.
32. ^ Ted
Huntington.
 
[1] Deutsch: Bild über den Reitenden
Urzwerg English: Image of Nanoarchaeum
equitans Date 2005-09-10 (original
upload date) Source Originally
from de.wikipedia; description page
is/was here. Author Original
uploader was Eber-Jimmy at
de.wikipedia Permission (Reusing
this file) This image is in the
public domain due to its
age. Licensing According to this
article, ''Es wurde von dem
Mikrobiologen Karl O. Stetter entdeckt.
Bildrechte: Public domain.'' PD
source: http://upload.wikimedia.org/wiki
pedia/commons/d/dc/Urzwerg.jpg


[2] Hydrogenobacter thermophilus
(strain TK-6) is an obligately
chemolithoautotrophic, extremely (and
strictly) thermophilic
hydrogen-oxidizing bacterium whose
optimal growth temperature is around 70
to 75°C and was isolated from hot
springs. UNKNOWN
source: http://standardsingenomics.org/i
ndex.php/sigen/article/viewFile/146/534/
4368

4,350,000,001 YBN
26)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
  
4,350,000,000 YBN
12
183) The first lipids on Earth; (fats,
oils, waxes10 ). Cells evolve that make
proteins that can assemble lipids.11
FO
OTNOTES
1. ^ find biomarker evidence
2. ^ "lipid." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 28 Dec. 2011.
http://www.answers.com/topic/lipid
3. ^ Ted Huntington.
4. ^ "lipid." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/lipid
5. ^ Ted Huntington.
6. ^ "lipid." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/lipid
7. ^ Ted Huntington.
8. ^ "lipid." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/lipid
9. ^ Ted Huntington.
10. ^ "lipid." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/lipid
11. ^ Ted Huntington.
12. ^ Ted Huntington.
 
[1] Figure1: Lipid accumulation in
differentiating 3T3-L1 pre-adipocyte
cell line (days in culture) UNKNOWN
source: http://www.emsdiasum.com/microsc
opy/products/sem/wet/images/lipid_accumu
lation.jpg


[2] Lipid Structures under the
microscope. Image by Alison North, The
Rockefeller University. UNKNOWN
source: http://selections.rockefeller.ed
u/cms/images/stories/2010/may/lipid.gif

4,345,000,000 YBN
6340)
FOOTNOTES
1. ^ Daniel V. Lim, "Microbiology",
2002,
p101. http://books.google.com/books?id=
CKEgLmqfbRQC&pg=PA101

2. ^ Daniel V. Lim, "Microbiology",
2002,
p101. http://books.google.com/books?id=
CKEgLmqfbRQC&pg=PA101

3. ^ Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P132,136.
4. ^
Campbell, Reece, et al., "Biology", 8th
Edition, 2008, P134-135.
5. ^ Daniel V. Lim,
"Microbiology", 2002,
p101. http://books.google.com/books?id=
CKEgLmqfbRQC&pg=PA101

 
[1] Figure 7.15 from: Campbell, Reece,
et al., ''Biology'', 8th Edition, 2008,
P135. COPYRIGHTED
source: Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P135.


[2] Figure 7.18 from: Campbell,
Reece, et al., ''Biology'', 8th
Edition, 2008, P137. COPYRIGHTED
source: Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P137.

4,340,000,000 YBN
23)
FOOTNOTES
1. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

2. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

3. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

4. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

5. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

6. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

7. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

8. ^
http://cellbio.utmb.edu/cellbio/rer2.htm

 
[1] Description Electron
micrograph of Bacteriophages Date
Source
en:Image:Phage.jpg Author
en:User:GrahamColm PD
source: http://upload.wikimedia.org/wiki
pedia/commons/5/52/Phage.jpg

4,335,000,000 YBN
28)
FOOTNOTES
1. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p162.
2. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p162.
3. ^ Campbell, Reece, et
al, "Biology", 8th edition, 2008, p162.
4. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p162.
5. ^ Campbell, Reece, et
al, "Biology", 8th edition, 2008, p162.
6. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p162.
7. ^ Campbell, Reece, et
al, "Biology", 8th edition, 2008, p167.
8. ^
Ted Huntington.
9. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p179.
10. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p179.
11. ^ Campbell, Reece,
et al, "Biology", 8th edition, 2008,
p167.
12. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p163.
13. ^ Ted
Huntington.
14. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p162.
15. ^ Ted
Huntington.
 
[1] Description English: Glycolysis
pathway overview. Date 3
September 2009 Source Own
work Author
WYassineMrabetTalk✉ Inkscape
Logo.svg This vector image was
created with
Inkscape. Permission (Reusing this
file) GFDL license (see below). GFDL
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/a/a0/Glycolysis.svg/
1024px-Glycolysis.svg.png


[2] Figure 9.6 from: Campbell, Reece,
et al, ''Biology'', 8th edition, 2008,
p166. COPYRIGHTED
source: Campbell, Reece, et al,
"Biology", 8th edition, 2008, p166.

4,330,000,000 YBN
44)
FOOTNOTES
1. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

2. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

3. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

4. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

5. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

6. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

 
[1] IUPAC
name[hide] 2-Hydroxypropanoic
acid Other names[hide] Milk
acid Description de: Struktur
von Milchsäure; en: Structure of
lactic acid Date 12 February
2007 Source Own work Author
NEUROtiker Permission (Reusing
this file) Own work, all rights
released (Public domain) PD
source: http://upload.wikimedia.org/wiki
pedia/commons/5/59/Lactic-acid-3D-balls.
png
AND http://upload.wikimedia.org/wikiped
ia/commons/thumb/d/d3/Lactic-acid-skelet
al.svg/1000px-Lactic-acid-skeletal.svg.p
ng

4,325,000,000 YBN
213)
FOOTNOTES
1. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

2. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

3. ^
http://216.239.63.104/search?q=cache:3s2
stckAJoMJ:www.nmc.edu/~ftank/115f04/Ch%2
5209%2520Notes.pdf+cellular+respiration+
oldest&hl=en

4. ^ Ted Huntington.
5. ^ Ted Huntington.
 
[1] Ethanol Full structural formula,
Ball and Stick Model, and Space-Filling
Model of Ethanol PD
source: http://upload.wikimedia.org/wiki
pedia/commons/3/37/Ethanol-2D-flat.png
AND http://upload.wikimedia.org/wikiped
ia/commons/b/b0/Ethanol-3D-balls.png
AND http://upload.wikimedia.org/wikiped
ia/commons/0/00/Ethanol-3D-vdW.png


[2] Description Fermenting
must. Date 20 March 2007 Source
English Wikipedia
http://en.wikipedia.org/wiki/Image:Mthom
ebrew_must.JPG Author
Agne27 GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/d/d5/Mthomebrew_must.JPG

4,315,000,000 YBN
196) Active transport evolves. Cells
evolve in which both proteins and ATP
are used to transport molecules into
and out of the cytoplasm.11 12 13

Active transport enabled a cell to
maintain internal concentrations of
small molecules that differ from the
cell's surroundings.14

A transport protein that generates
voltage across a membrane is called an
"electrogenic pump". Proton pumps, the
main electrogenic pumps of plants,
fungi, and bacteria are proteins that
create an voltage across membranes.
Using ATP, a proton pump moves a
positive charge in the form of hydrogen
ions out of the cell.15

Another example of active transport is
how Escherichia coli imports lactose
using an ion gradient-mediated active
transport. Lactose is transported
across the plasma membrane by a
membrane associated permease which is
coded for by a gene of the lac
operon.16
FOOTNOTES
1. ^
http://www.cat.cc.md.us/~gkaiser/biotuto
rials/eustruct/cmeu.html

2. ^ "active transport." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 10
Jul. 2011.
http://www.answers.com/topic/active-tran
sport

3. ^ "active transport." The Oxford
Dictionary of Sports Science . Oxford
University Press, 1998, 2006, 2007.
Answers.com 10 Jul. 2011.
http://www.answers.com/topic/active-tran
sport

4. ^
http://www.cat.cc.md.us/~gkaiser/biotuto
rials/eustruct/cmeu.html

5. ^ "active transport." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 10
Jul. 2011.
http://www.answers.com/topic/active-tran
sport

6. ^ "active transport." The Oxford
Dictionary of Sports Science . Oxford
University Press, 1998, 2006, 2007.
Answers.com 10 Jul. 2011.
http://www.answers.com/topic/active-tran
sport

7. ^
http://www.cat.cc.md.us/~gkaiser/biotuto
rials/eustruct/cmeu.html

8. ^ "active transport." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 10
Jul. 2011.
http://www.answers.com/topic/active-tran
sport

9. ^ "active transport." The Oxford
Dictionary of Sports Science . Oxford
University Press, 1998, 2006, 2007.
Answers.com 10 Jul. 2011.
http://www.answers.com/topic/active-tran
sport

10. ^ Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P135.
11. ^
http://www.cat.cc.md.us/~gkaiser/biotuto
rials/eustruct/cmeu.html

12. ^ "active transport." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 10
Jul. 2011.
http://www.answers.com/topic/active-tran
sport

13. ^ "active transport." The Oxford
Dictionary of Sports Science . Oxford
University Press, 1998, 2006, 2007.
Answers.com 10 Jul. 2011.
http://www.answers.com/topic/active-tran
sport

14. ^ Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P135.
15. ^
Campbell, Reece, et al., "Biology", 8th
Edition, 2008, P137.
16. ^ Daniel V. Lim,
"Microbiology", 2002,
p104. http://books.google.com/books?id=
CKEgLmqfbRQC&pg=PA101

 
[1] Figure 7.18 from: Campbell, Reece,
et al., ''Biology'', 8th Edition, 2008,
P137. COPYRIGHTED
source: Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P137.


[2] Figure 7.15 from: Campbell,
Reece, et al., ''Biology'', 8th
Edition, 2008, P135. COPYRIGHTED
source: Campbell, Reece, et al.,
"Biology", 8th Edition, 2008, P135.

4,305,000,000 YBN
64) Operons evolve which allow for
turning off the assembly of any
protein.13 14

Operons, sequences of DNA that allow
certain proteins coded by DNA to not be
built, evolve. Proteins bind with these
DNA sequences to stop RNA polymerase
from building mRNA molecules which
would be translated into proteins.
Operons allow a bacterium to produce
certain proteins only when necessary.
Bacteria before now can only build a
constant stream of all proteins encoded
in their DNA.15 16
FOOTNOTES
1. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

2. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

3. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

4. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

5. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

6. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

7. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

8. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

9. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

10. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

11. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

12. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

13. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

14. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

15. ^
http://info.bio.cmu.edu/Courses/03441/Te
rmPapers/99TermPapers/GenEvo/operon.html

16. ^
http://web.indstate.edu/thcme/mwking/gen
e-regulation.html#table

 
[1] Figure 6 from: Jacob, F. & Monod,
J. Genetic regulatory mechanisms in the
synthesis of proteins. J. Mol. Biol. 3,
318–356 (1961)
http://www.sciencedirect.com/science?_
ob=ArticleURL&_udi=B6WK7-4Y39HH7-B&_user
=4422&_coverDate=06%2F30%2F1961&_alid=17
23143833&_rdoc=1&_fmt=high&_orig=search&
_origin=search&_zone=rslt_list_item&_cdi
=6899&_sort=r&_st=13&_docanchor=&view=c&
_ct=5&_acct=C000059600&_version=1&_urlVe
rsion=0&_userid=4422&md5=c2699b72c7c5bee
4e2c31224c6261556&searchtype=a {Jacob_F
rancois_19601228.pdf} COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence?_ob=ArticleURL&_udi=B6WK7-4Y39HH7-B
&_user=4422&_coverDate=06%2F30%2F1961&_a
lid=1723143833&_rdoc=1&_fmt=high&_orig=s
earch&_origin=search&_zone=rslt_list_ite
m&_cdi=6899&_sort=r&_st=13&_docanchor=&v
iew=c&_ct=5&_acct=C000059600&_version=1&
_urlVersion=0&_userid=4422&md5=c2699b72c
7c5bee4e2c31224c6261556&searchtype=a {J
acob_Francois_19601228.pdf}


[2] Figure 3 from: Jacob, F. & Monod,
J. Genetic regulatory mechanisms in the
synthesis of proteins. J. Mol. Biol. 3,
318–356 (1961)
http://www.sciencedirect.com/science?_
ob=ArticleURL&_udi=B6WK7-4Y39HH7-B&_user
=4422&_coverDate=06%2F30%2F1961&_alid=17
23143833&_rdoc=1&_fmt=high&_orig=search&
_origin=search&_zone=rslt_list_item&_cdi
=6899&_sort=r&_st=13&_docanchor=&view=c&
_ct=5&_acct=C000059600&_version=1&_urlVe
rsion=0&_userid=4422&md5=c2699b72c7c5bee
4e2c31224c6261556&searchtype=a {Jacob_F
rancois_19601228.pdf} COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence?_ob=ArticleURL&_udi=B6WK7-4Y39HH7-B
&_user=4422&_coverDate=06%2F30%2F1961&_a
lid=1723143833&_rdoc=1&_fmt=high&_orig=s
earch&_origin=search&_zone=rslt_list_ite
m&_cdi=6899&_sort=r&_st=13&_docanchor=&v
iew=c&_ct=5&_acct=C000059600&_version=1&
_urlVersion=0&_userid=4422&md5=c2699b72c
7c5bee4e2c31224c6261556&searchtype=a {J
acob_Francois_19601228.pdf}

4,260,000,000 YBN
27) Peptidoglycan occurs only in the
Bacteria (except for those without a
cell wall, such as Mycoplasma).
Peptidoglycan is a long-chain polymer
of two repeating sugars
(N-acetylglucosamine and N-acetyl
muramic acid), in which adjacent sugar
chains are linked to one another by
peptide bridges that give the link
rigid stability. The nature of the
peptide bridges differs considerably
between species of bacteria.
Peptidoglycan synthesis is the target
of many useful antimicrobial agents,
including the β-lactam antibiotics
(e.g., penicillin) that block the
cross-linking of the peptide bridges.
Some of the proteins that animals
synthesize as natural antibacterial
defense factors attack the cell walls
of bacteria.9
FOOTNOTES
1. ^ "bacteria." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 03 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/48203/bacteria
>.
2. ^ "Cell wall", Oxford Dictionary of
Biochemistry. Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
3. ^
"bacteria." Encyclopædia Britannica.
Encyclopædia Britannica Online.
Encyclopædia Britannica Inc., 2012.
Web. 03 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/48203/bacteria
>.
4. ^ "Cell wall", Oxford Dictionary of
Biochemistry. Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
5. ^
"bacteria." Encyclopædia Britannica.
Encyclopædia Britannica Online.
Encyclopædia Britannica Inc., 2012.
Web. 03 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/48203/bacteria
>.
6. ^ "Cell wall", Oxford Dictionary of
Biochemistry. Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
7. ^
"Cell wall", Oxford Dictionary of
Biochemistry. Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
8. ^
"bacteria." Encyclopædia Britannica.
Encyclopædia Britannica Online.
Encyclopædia Britannica Inc., 2012.
Web. 03 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/48203/bacteria
>.
9. ^ "bacteria." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 03 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/48203/bacteria
>.
 
[1] Gram negative cell
wall http://www.arches.uga.edu/~kristen
c/cellwall.html COPYRIGHTED
source: http://www.arches.uga.edu/~krist
enc/cellwall.html


[2] Gram positive cell
wall http://www.arches.uga.edu/~kristen
c/cellwall.html COPYRIGHTED
source: http://www.arches.uga.edu/~krist
enc/cellwall.html

4,193,000,000 YBN
34 35 36 37 38 39 40 41 42
77) Archaea (also called
archaebacteria) evolve.24 Phylum
Nanoarcheota.25 26

Eubacteria and Archaea are the two
major lines of Prokaryotes. Prokaryotes
are the most primitive living objects
ever found. Prokaryotes differ from the
later evolved eukaryotes in have a
circle of DNA located in their
cytoplasm (not chromosomes) and have no
nucleus. There are many widely varying
estimates of when the last common
ancestor between Eubacteria and Archaea
evolved. At least one genetic
comparison shows the common ancestor of
Eubacteria and Archaea evolving now.27
28 29 30 31 32 33
FOOTNOTES
1. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

2. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

3. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

4. ^ Hedges and Kumar, "TimeTree of
Life", 2009,
p102. http://timetree.org/pdf/Battistuz
zi2009Chap06.pdf

5. ^ Huber, H., Hohn, M.J., Rachel, R.,
Fuchs, T., Wimmer, V.C., and Stetter,
K.O. "A new phylum of Archaea
represented by a nanosized
hyperthermophilic symbiont." Nature
(2002)
417:63-67. http://www.nature.com/nature
/journal/v417/n6884/full/417063a.html

6. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

7. ^ Russell F. Doolittle, Da-Fei Feng,
Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996). 2142-1873my
8. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004). 2300my
9. ^
Battistuzzi, Feijao, Hedges, "A Genomic
timescale of prokaryote evolution:
insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). 4100my (has arche b4
eu)
10. ^ Osawa, S., Honjo, "Archaebacteria
vs Metabacteria : Phylogenetic tree of
organisms indicated by comparison of 5S
ribosomal RNA sequences.", (Tokyo:
Springer, Tokyo/ Berlin eds.:"Evolution
of Life", pp. 325-336,, 1991). 1800my
11. ^ S.
Blair Hedges, "The Origin and Evolution
of Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html
{4000my}
12. ^ S. Blair
Hedges and Sudhir Kumar, "Genomic
clocks and evolutionary timescales",
Trends in Genetics Volume 19, Issue 4 ,
April 2003, Pages 200-206, (2003).
3970my
13. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

14. ^ Hedges and Kumar, "TimeTree of
Life", 2009,
p102. http://timetree.org/pdf/Battistuz
zi2009Chap06.pdf

15. ^ Huber, H., Hohn, M.J., Rachel,
R., Fuchs, T., Wimmer, V.C., and
Stetter, K.O. "A new phylum of Archaea
represented by a nanosized
hyperthermophilic symbiont." Nature
(2002)
417:63-67. http://www.nature.com/nature
/journal/v417/n6884/full/417063a.html

16. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

17. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996). 2142-1873my
18. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004). 2300my
19. ^
Battistuzzi, Feijao, Hedges, "A Genomic
timescale of prokaryote evolution:
insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). 4100my (has arche b4
eu)
20. ^ Osawa, S., Honjo, "Archaebacteria
vs Metabacteria : Phylogenetic tree of
organisms indicated by comparison of 5S
ribosomal RNA sequences.", (Tokyo:
Springer, Tokyo/ Berlin eds.:"Evolution
of Life", pp. 325-336,, 1991). 1800my
21. ^ S.
Blair Hedges, "The Origin and Evolution
of Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html
{4000my}
22. ^ S. Blair
Hedges and Sudhir Kumar, "Genomic
clocks and evolutionary timescales",
Trends in Genetics Volume 19, Issue 4 ,
April 2003, Pages 200-206, (2003).
3970my
23. ^ "archaebacterium." Britannica
Concise Encyclopedia. Encyclopædia
Britannica, Inc., 1994-2010.
Answers.com 21 Aug. 2011.
http://www.answers.com/topic/archaebacte
ria

24. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

25. ^ Hedges and Kumar, "TimeTree of
Life", 2009,
p102. http://timetree.org/pdf/Battistuz
zi2009Chap06.pdf

26. ^ Huber, H., Hohn, M.J., Rachel,
R., Fuchs, T., Wimmer, V.C., and
Stetter, K.O. "A new phylum of Archaea
represented by a nanosized
hyperthermophilic symbiont." Nature
(2002)
417:63-67. http://www.nature.com/nature
/journal/v417/n6884/full/417063a.html

27. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

28. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996). 2142-1873my
29. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004). 2300my
30. ^
Battistuzzi, Feijao, Hedges, "A Genomic
timescale of prokaryote evolution:
insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). 4100my (has arche b4
eu)
31. ^ Osawa, S., Honjo, "Archaebacteria
vs Metabacteria : Phylogenetic tree of
organisms indicated by comparison of 5S
ribosomal RNA sequences.", (Tokyo:
Springer, Tokyo/ Berlin eds.:"Evolution
of Life", pp. 325-336,, 1991). 1800my
32. ^ S.
Blair Hedges, "The Origin and Evolution
of Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html
{4000my}
33. ^ S. Blair
Hedges and Sudhir Kumar, "Genomic
clocks and evolutionary timescales",
Trends in Genetics Volume 19, Issue 4 ,
April 2003, Pages 200-206, (2003).
3970my
34. ^ S. Blair Hedges and Sudhir Kumar,
"The Timetree of Life", 2009,
p102-103. http://www.timetree.org/book.
php

35. ^ S. Blair Hedges and Sudhir Kumar,
"TimeTree of Life",
p102-103. http://www.timetree.org/pdf/H
edges2009Chap05.pdf

36. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html

37. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996). 2142-1873my
(2142-1873my)
38. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). 2300my (2300my)
39. ^
Battistuzzi, Feijao, Hedges, "A Genomic
timescale of prokaryote evolution:
insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). 4100my (has arche b4
eu) (4100my)
40. ^ Osawa, S., Honjo,
"Archaebacteria vs Metabacteria :
Phylogenetic tree of organisms
indicated by comparison of 5S ribosomal
RNA sequences.", (Tokyo: Springer,
Tokyo/ Berlin eds.:"Evolution of Life",
pp. 325-336,, 1991). 1800my (1800my)
41. ^ S.
Blair Hedges, "The Origin and Evolution
of Model Organisms", Nature Reviews
Genetics 3, 838-849 (2002);
doi:10.1038/nrg929, (2002). 4000my
(4000my)
42. ^ S. Blair Hedges and Sudhir Kumar,
"Genomic clocks and evolutionary
timescales", Trends in Genetics
Volume 19, Issue 4 , April 2003, Pages
200-206, (2003). 3970my (3970my)
 
[1] Deutsch: Bild über den Reitenden
Urzwerg English: Image of Nanoarchaeum
equitans Date 2005-09-10 (original
upload date) Source Originally
from de.wikipedia; description page
is/was here. Author Original
uploader was Eber-Jimmy at
de.wikipedia Permission (Reusing
this file) This image is in the
public domain due to its
age. Licensing According to this
article, ''Es wurde von dem
Mikrobiologen Karl O. Stetter entdeckt.
Bildrechte: Public domain.'' PD
source: http://upload.wikimedia.org/wiki
pedia/commons/d/dc/Urzwerg.jpg


[2] Figure 1) Changing views of the
tree and timescale of life. a) An
early-1990s view, with the tree
determined mostly from ribosomal RNA
(rRNA) sequence analysis. This tree
emphasizes vertical (as opposed to
horizontal) evolution and the close
relationship between eukaryotes and the
Archaebacteria. The deep branching
(>3.5 Giga (109) years ago, Gya) of
CYANOBACTERIA (Cy) and other Eubacteria
(purple), the shallow branching
(approx1 Gya) of plants (Pl), animals
(An) and fungi (Fu), and the early
origin of mitochondria (Mi), were based
on interpretations of the geochemical
and fossil record7, 8. Some deeply
branching amitochondriate (Am) species
were believed to have arisen before the
origin of mitochondria44. Major
symbiotic events (black dots) were
introduced to explain the origin of
eukaryotic organelles42, but were not
assumed to be associated with large
transfers of genes to the host nucleus.
They were: Eu, joining of an
archaebacterium host with a eubacterium
(presumably a SPIROCHAETE) to produce
an amitochondriate eukaryote; Mi,
joining of a eukaryote host with an
alpha-proteobacterium (Ap) symbiont,
leading to the origin of mitochondria,
and plastids (Ps), joining of a
eukaryote host with a cyanobacterium
symbiont, forming the origin of
plastids on the plant lineage and
possibly on other lineages. b) The
present view, based on extensive
genomic analysis. Eukaryotes are no
longer considered to be close relatives
of Archaebacteria, but are genomic
hybrids of Archaebacteria and
Eubacteria, owing to the transfer of
large numbers of genes from the
symbiont genome to the nucleus of the
host (indicated by coloured arrows).
Other new features, largely derived
from molecular-clock studies16, 39 (Box
1), include a relatively recent origin
of Cyanobacteria (approx2.6 Gya) and
mitochondria (approx1.8 Gya), an early
origin (approx1.5 Gya) of plants,
animals and fungi, and a close
relationship between animals and fungi.
Coloured dashed lines indicate
controversial aspects of the present
view: the existence of a
premitochondrial symbiotic event and of
living amitochondriate eukaryotes,
ancestors of which never had
mitochondria. c) The times of
divergence of selected model organisms
from humans, based on molecular clocks.
For the prokaryotes (red), because of
different possible origins through
symbiotic events, divergence times
depend on the gene of interest.
source: http://www.nature.com/nrg/journa
l/v3/n11/full/nrg929_fs.html

4,189,000,000 YBN
9 10
193)
FOOTNOTES
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
2. ^ Brocks, Buick, "A
reconstruction of Archean biological
diversity based on", Geochimica et
cosmochimica acta, (2003).
3. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
4. ^ Brocks, Buick, "A reconstruction
of Archean biological diversity based
on", Geochimica et cosmochimica acta,
(2003).
5. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
6. ^ Brocks, Buick, "A
reconstruction of Archean biological
diversity based on", Geochimica et
cosmochimica acta, (2003).
7. ^ "Aquifex".
Wikipedia. Wikipedia, 2008.
http://en.wikipedia.org/wiki/Aquifex
8. ^ Ted Huntington.
9. ^ S. Blair Hedges and
Sudhir Kumar, "The Timetree of Life",
2009,
p107-110. http://www.timetree.org/book.
php

10. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
 
[1] A timescale of prokaryote
evolution. Letters indicate nodes
discussed in the text. The last common
ancestor was arbitrarily placed at 4.25
Ga in the tree, although this placement
was not part of the analyses. The grey
rectangle shows the time prior to the
initial rise in oxygen (presumably
anaerobic conditions). Mtb:
Methanothermobacter, Tab:
Thermoanaerobacter, Tsc:
Thermosynechococcus. Battistuzzi et
al. BMC Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 Table
1 Time estimates for selected nodes
in the tree of eubacteria (A-K) and
archaebacteria (L-P). Letters refer to
Fig. 3. Time (Ma)a CIb Node
A 102 57–176 Node
B 2508 2154–2928 Node
C 2800 2452–3223 Node
D 1039 702–1408 Node
E 2558 2310–2969 Node
F 2784 2490–3203 Node
G 2923 2587–3352 Node
H 3054 2697–3490 Node
I 3186 2801–3634 Node
J 3644 3172–4130 Node
K 3977 3434–4464 Node
L 233 118–386 Node
M 3085 2469–3514 Node
N 3566 2876–3948 Node
O 3781 3047–4163 Node
P 4112 3314–4486 a Averages of
the divergence times estimated using
the 2.3 Ga minimum constraint and the
five ingroup root constraints (nodes
A-K) and using the 1.198 ± 0.022 Ga
constraint and the five ingroup root
constraints (nodes L-P). b
Credibility interval (minimum and
maximum averages of the analyses under
the five ingroup root
constraints) Battistuzzi et al. BMC
Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 COPYRIGHTED

source: http://www.biomedcentral.com/con
tent/figures/1471-2148-4-44-3-l.jpg


[2] Aquifex pyrophilus (platinum
shadowed). © K.O. Stetter & Reinhard
Rachel, University of Regensburg.
source: http://biology.kenyon.edu/Microb
ial_Biorealm/bacteria/aquifex/aquifex.ht
m

4,189,000,000 YBN
7 8
292) (It seems logical that the
prokaryote flagellum would evolve in
proteobacteria because most prokaryotes
with a flagellum are in the
Proteobacteria domain. There is a unity
between pili, flagellum, and exchange
of DNA (sex), in particular, in the
proteobacterium E. Coli.6 )
FOOTNOTES
1. ^ conjugation in protists, flagella
in eukaryotes: Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).
2. ^
conjugation in protists, flagella in
eukaryotes: Michael Sleigh, "Protozoa
and Other Protists", (London; New York:
Edward Arnold, 1989).
3. ^ conjugation in
protists, flagella in eukaryotes:
Michael Sleigh, "Protozoa and Other
Protists", (London; New York: Edward
Arnold, 1989).
4. ^ prokaryote pili and
archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

5. ^ Ted Huntington.
6. ^ Ted Huntington.
7. ^ S. Blair Hedges
and Sudhir Kumar, "The Timetree of
Life", 2009,
p107-110. http://www.timetree.org/book.
php

8. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). {2800000000 YBN}

MORE INFO
[1] Pallen MJ, Matzke NJ (October
2006). "From The Origin of Species to
the origin of bacterial flagella".
Nature Reviews. Microbiology 4 (10):
784–90. doi:10.1038/nrmicro1493. PMID
16953248. http://www.nature.com/nrmicro
/journal/v4/n10/full/nrmicro1493.html

[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
[3] Tree of life,
http://tolweb.org/tree/
[4] David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
[5] JOSHUA LEDERBERG, E. L.
TATUM, "Gene Recombination in
Escherichia Coli", Nature 158, 558-558
(19 October 1946) doi:10.1038/158558a0
Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html

[6] "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>
 
[1] Aquifex pyrophilus (platinum
shadowed). © K.O. Stetter & Reinhard
Rachel, University of Regensburg.
COPYRIGHTED
source: http://biology.kenyon.edu/Microb
ial_Biorealm/bacteria/aquifex/aquifex.ht
m

4,187,000,000 YBN
11 12 13 14
78) Archaea Phylum: Korarchaeota
evolves according to genetic
comparison.7 8
This group, originally
identified by two environmental sample
sequences from the Obsidian Pool hot
spring in Yellowstone National Park9 ,
currently includes only environmental
DNA sequences and no Korarchaeota have
been cultured yet.10
FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44/abstract

3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44/abstract

5. ^ Barns, S.M., Delwiche, C.F.,
Palmer, J.D., and Pace, N.R.
"Perspectives on archaeal diversity,
thermophily and monophyly from
environmental rRNA sequences." Proc.
Natl. Acad. Sci. USA (1996)
93:9188-9193.
6. ^
http://www.ncbi.nlm.nih.gov/Taxonomy/Bro
wser/wwwtax.cgi?mode=Info&id=51967

7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44/abstract

9. ^ Barns, S.M., Delwiche, C.F.,
Palmer, J.D., and Pace, N.R.
"Perspectives on archaeal diversity,
thermophily and monophyly from
environmental rRNA sequences." Proc.
Natl. Acad. Sci. USA (1996)
93:9188-9193.
10. ^
http://www.ncbi.nlm.nih.gov/Taxonomy/Bro
wser/wwwtax.cgi?mode=Info&id=51967

11. ^ Elkins JG, Podar M, Graham DE,
Makarova KS, Wolf Y, Randau L, Hedlund
BP, Brochier-Armanet C, Kunin V,
Anderson I, Lapidus A, Goltsman E,
Barry K, Koonin EV, Hugenholtz P,
Kyrpides N, Wanner G, Richardson P,
Keller M, Stetter KO. (July 2008). "A
korarchaeal genome reveals insights
into the evolution of the Archaea".
Proc Natl Acad Sci 105 (1): 8805–6.
Bibcode 2008PNAS..105.8102E.
doi:10.1073/pnas.0801980105. PMC
2430366. PMID
18535141. http://www.ncbi.nlm.nih.gov/p
mc/articles/PMC2430366/?tool=pmcentrez

12. ^ S. Blair Hedges and Sudhir Kumar,
"The Timetree of Life", 2009,
p102-103. http://www.timetree.org/book.
php

13. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
http://www.biomedcentral.com/1471-2148
/4/44/abstract

14. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).

MORE INFO
[1] also see nature v417 n6886
[2]
Battistuzzi, Feijao, Hedges, "A Genomic
timescale of prokaryote evolution:
insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). and image 1
 
[1] Description English: Each of
these six hot springs (clockwise from
top left: Uzon4, Uzon7, Uzon8, Uzon9,
Mut11, Mut13) in Kamchatka were found
to contain Korarchaeota. Date 22
August 2005 Source Own
work Author Tommy Auchtung GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/a/a4/KamchatkaKorHot
Springs.jpg/1280px-KamchatkaKorHotSpring
s.jpg


[2] Figure 2 from: Elkins JG, Podar
M, Graham DE, Makarova KS, Wolf Y,
Randau L, Hedlund BP, Brochier-Armanet
C, Kunin V, Anderson I, Lapidus A,
Goltsman E, Barry K, Koonin EV,
Hugenholtz P, Kyrpides N, Wanner G,
Richardson P, Keller M, Stetter KO.
(July 2008). ''A korarchaeal genome
reveals insights into the evolution of
the Archaea''. Proc Natl Acad Sci 105
(1): 8805–6. Bibcode
2008PNAS..105.8102E.
doi:10.1073/pnas.0801980105. PMC
2430366. PMID
18535141. http://www.ncbi.nlm.nih.gov/p
mc/articles/PMC2430366/?tool=pmcentrez
COPYRIGHTED
source: http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2430366/pdf/zpq8102.pdf

4,187,000,000 YBN
28 29
180) Archaea Phylum: Euryarchaeota
{YRE-oR-KE-O-Tu20 } (methanogens,
halobacteria) evolve according to
genetic comparison.21 22

Earliest cell response to light.23

The Euryarchaeota {YRE-oR-KE-O-Tu24 }
are a major group of Archaea (or
Archaebacteria). They include the
methanogens, which produce methane and
are often found in intestines, the
halobacteria, which survive extreme
concentrations of salt, and some
extremely thermophilic aerobes and
anaerobes. They are separated from the
other archaeans based mainly on rRNA
sequences.25

The Euryarchaeotes may be the living
object with the most primitive DNA
still found on earth (depending on the
accurate determination of the origin of
Eubacteria and Archaea).26

Halophilic archaebacteria, such as
Halobacterium salinarum, use sensory
rhodopsins for phototaxis (positive or
negative movement along a light
gradient or vector).27
FOOTNOTES
1. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

2. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44

5. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

6. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44

9. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

10. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

11. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
12. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44

13. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

14. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

15. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
16. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44

17. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

18. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

19. ^ "Euryarchaeota". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Euryarchaeo
ta

20. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

21. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
22. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
http://www.biomedcentral.com/1471-2148
/4/44

23. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

24. ^
http://howjsay.com/index.php?word=euryar
chaeota&submit=Submit

25. ^ "Euryarchaeota". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Euryarchaeo
ta

26. ^ Ted Huntington.
27. ^ Jékely, Gáspár.
"Evolution of phototaxis."
Philosophical Transactions of the
Royal Society B: Biological Sciences
364 (October 2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

28. ^ S. Blair Hedges and Sudhir Kumar,
"The Timetree of Life", 2009,
p102-103. http://www.timetree.org/book.
php

29. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology,
(2004). http://www.biomedcentral.com/14
71-2148/4/44


MORE INFO
[1] S. Blair Hedges, "The origin
and evolution of model organisms",
Nature Reviews Genetics 3, 838-849
(November 2002),
doi:10.1038/nrg929 http://www.nature.co
m/nrg/journal/v3/n11/full/nrg929.html#to
p

 
[1] A timescale of prokaryote
evolution. Letters indicate nodes
discussed in the text. The last common
ancestor was arbitrarily placed at 4.25
Ga in the tree, although this placement
was not part of the analyses. The grey
rectangle shows the time prior to the
initial rise in oxygen (presumably
anaerobic conditions). Mtb:
Methanothermobacter, Tab:
Thermoanaerobacter, Tsc:
Thermosynechococcus. Battistuzzi et
al. BMC Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 Table
1 Time estimates for selected nodes
in the tree of eubacteria (A-K) and
archaebacteria (L-P). Letters refer to
Fig. 3. Time (Ma)a CIb Node
A 102 57–176 Node
B 2508 2154–2928 Node
C 2800 2452–3223 Node
D 1039 702–1408 Node
E 2558 2310–2969 Node
F 2784 2490–3203 Node
G 2923 2587–3352 Node
H 3054 2697–3490 Node
I 3186 2801–3634 Node
J 3644 3172–4130 Node
K 3977 3434–4464 Node
L 233 118–386 Node
M 3085 2469–3514 Node
N 3566 2876–3948 Node
O 3781 3047–4163 Node
P 4112 3314–4486 a Averages of
the divergence times estimated using
the 2.3 Ga minimum constraint and the
five ingroup root constraints (nodes
A-K) and using the 1.198 ± 0.022 Ga
constraint and the five ingroup root
constraints (nodes L-P). b
Credibility interval (minimum and
maximum averages of the analyses under
the five ingroup root
constraints) Battistuzzi et al. BMC
Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 COPYRIGHTED
[1] tree of archaebacteria (archaea)
COPYRIGHTED
source: http://www.biomedcentral.com/con
tent/figures/1471-2148-4-44-3-l.jpg


[2] A phylogenetic tree of living
things, based on RNA data, showing the
separation of bacteria, archaea, and
eukaryotes. Trees constructed with
other genes are generally similar,
although they may place some
early-branching groups very
differently, thanks to long branch
attraction. The exact relationships of
the three domains are still being
debated, as is the position of the root
of the tree. It has also been suggested
that due to lateral gene transfer, a
tree may not be the best representation
of the genetic relationships of all
organisms. NASA
source: http://www.uni-giessen.de/~gf126
5/GROUPS/KLUG/Stammbaum.html

4,187,000,000 YBN
13 14
181) Genetic comparison shows the
Archaea Phylum, Crenarchaeotes evolving
now.10 11

The phylum Crenarchaeota, commonly
referred to as the Crenarchaea,
contains many extremely thermophilic
(hot-loving) and psychrophilic
(cold-loving) organisms. They were
originally separated from the other
archaeons based on rRNA sequences,
since then physiological features, such
as lack of histones have supported this
division. Until recently all cultured
crenarchaea have been thermophilic or
hyperthermophilic organisms, some of
which have the ability to grow up to
113 degrees C. These organisms stain
gram negative and are morphologically
diverse having rod, cocci, filamentous
and unusually shaped cells.12
FOOTNOTES

1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
5. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
6. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
9. ^ "Crenarchaeota". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Crenarchaeo
ta

10. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
11. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
12. ^ "Crenarchaeota". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Crenarchaeo
ta

13. ^ S. Blair Hedges and Sudhir Kumar,
"The Timetree of Life", 2009,
p102-103. http://www.timetree.org/book.
php

14. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
 
[1] A timescale of prokaryote
evolution. Letters indicate nodes
discussed in the text. The last common
ancestor was arbitrarily placed at 4.25
Ga in the tree, although this placement
was not part of the analyses. The grey
rectangle shows the time prior to the
initial rise in oxygen (presumably
anaerobic conditions). Mtb:
Methanothermobacter, Tab:
Thermoanaerobacter, Tsc:
Thermosynechococcus. Battistuzzi et
al. BMC Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 Table
1 Time estimates for selected nodes
in the tree of eubacteria (A-K) and
archaebacteria (L-P). Letters refer to
Fig. 3. Time (Ma)a CIb Node
A 102 57–176 Node
B 2508 2154–2928 Node
C 2800 2452–3223 Node
D 1039 702–1408 Node
E 2558 2310–2969 Node
F 2784 2490–3203 Node
G 2923 2587–3352 Node
H 3054 2697–3490 Node
I 3186 2801–3634 Node
J 3644 3172–4130 Node
K 3977 3434–4464 Node
L 233 118–386 Node
M 3085 2469–3514 Node
N 3566 2876–3948 Node
O 3781 3047–4163 Node
P 4112 3314–4486 a Averages of
the divergence times estimated using
the 2.3 Ga minimum constraint and the
five ingroup root constraints (nodes
A-K) and using the 1.198 ± 0.022 Ga
constraint and the five ingroup root
constraints (nodes L-P). b
Credibility interval (minimum and
maximum averages of the analyses under
the five ingroup root
constraints) Battistuzzi et al. BMC
Evolutionary Biology 2004 4:44
doi:10.1186/1471-2148-4-44 COPYRIGHTED

source: http://www.biomedcentral.com/con
tent/figures/1471-2148-4-44-3-l.jpg


[2] tree of archaea ?
source: http://www.uni-giessen.de/~gf126
5/GROUPS/KLUG/Stammbaum.html

4,112,000,000 YBN
9
58)
FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
3. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005).
4. ^ "autotroph." The Columbia
Electronic Encyclopedia, Sixth Edition.
Columbia University Press., 2012.
Answers.com 06 Jan. 2012.
http://www.answers.com/topic/autotroph
5. ^ "autotroph." The Columbia
Electronic Encyclopedia, Sixth Edition.
Columbia University Press., 2012.
Answers.com 06 Jan. 2012.
http://www.answers.com/topic/autotroph
6. ^ "autotroph." Oxford Dictionary of
Biochemistry. Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
All rights reserved. 2012.
Answers.com 06 Jan. 2012.
http://www.answers.com/topic/autotroph
7. ^ Ted Huntington.
8. ^ Ted Huntington.
9. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004). http://www.biomedcentral.com/14
71-2148/4/44

 
[1] Description Methanopyrus
kandleri Date July
2006 Source ms:Imej:Arkea.jpg Auth
or ms:User:PM Poon GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/a/aa/Arkea.jpg

4,100,000,000 YBN
1
49) replace wiki source
FOOTNOTES
1. ^ Olson JM (May 2006).
"Photosynthesis in the Archean era".
Photosyn. Res. 88 (2): 109–17.
doi:10.1007/s11120-006-9040-5. PMID
16453059.

MORE INFO
[1] Campbell, Reece, "Biology",
2009, 190-198.
 
[1] Chemiosmosis as it operates in
photophosphorylation within a
chloroplast. Images from Purves et al.,
Life: The Science of Biology, 4th
Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/0817_1.gif


[2] Chemiosmosis as it operates in
photophosphorylation within a
chloroplast. Images from Purves et al.,
Life: The Science of Biology, 4th
Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/0817_2.gif

4,030,000,000 YBN
35)
FOOTNOTES
1. ^
http://pubs.usgs.gov/gip/geotime/age.htm
l

2. ^
http://www.geol.umd.edu/~tholtz/G102/102
arch1.htm

3. ^
http://chigaku.ed.gifu-u.ac.jp/chigakuhp
/dem/tec/history/isua.html

4. ^
http://www.mediaworkshop.org/techcamp/gr
oupc/geology/geohome.htm

5. ^ "Metamorphic rock." Britannica
Concise Encyclopedia. Encyclopædia
Britannica, Inc., 1994-2010.
Answers.com 04 Mar. 2012.
http://www.answers.com/topic/metamorphic
-rock

6. ^ "gneiss." A Dictionary of
Geography. Oxford University Press,
1992, 1997, 2004. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/gneiss
 
[1]
http://www.regione.emilia-romagna.it/geo
logia/divulgazione/pianeta_terra/09_paes
aggio/img/app/c09_a01_01.jpg
source: http://www.regione.emilia-romagn
a.it/geologia/divulgazione/pianeta_terra
/09_paesaggio/img/app/c09_a01_01.jpg


[2] UNKNOWN
source: UNKNOWN

4,000,000,000 YBN
1
43) The simple equation of
photosynthesis is: 6 H2O + 6 CO2 +
photons = C6H12O6 (glucose) + 6O2. The
detailed steps of photosynthesis are
called the "Calvin Cycle". Prokaryote
cells can now produce their own glucose
to store and be converted to ATP by
glycolysis and fermentation later.

Of the 5 phyla of eubacteria that can
photosynthesize, only 1, cyanobacteria,
produces oxygen.
FOOTNOTES
1. ^
http://www.emc.maricopa.edu/faculty/fara
bee/BIOBK/BioBookPS.html
http://www.ebi
.ac.uk/interpro/potm/2004_11/Page1.htm3

MORE INFO
[1] Campbell, Reece, "Biology",
2009, 190-198
 
[1] Chemiosmosis as it operates in
photophosphorylation within a
chloroplast. Images from Purves et al.,
Life: The Science of Biology, 4th
Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/0817_1.gif


[2] Chemiosmosis as it operates in
photophosphorylation within a
chloroplast. Images from Purves et al.,
Life: The Science of Biology, 4th
Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/0817_2.gif

4,000,000,000 YBN
4
51)
FOOTNOTES
1. ^
http://www.geosociety.org/science/timesc
ale/

2. ^
http://www.geosociety.org/science/timesc
ale/

3. ^
http://www.geosociety.org/science/timesc
ale/

4. ^ "Divisions of Geologic Time",
2010,
USGS http://pubs.usgs.gov/fs/2010/3059/
pdf/FS10-3059.pdf

 
[1] Geologic Time Scale 2009 UNKNOWN
source: http://www.geosociety.org/scienc
e/timescale/timescl.pdf

3,900,000,000 YBN
57)
FOOTNOTES
1. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p162-184.
2. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p162-184.
3. ^ Campbell, Reece, et
al, "Biology", 8th edition, 2008,
p162-184.
4. ^ Campbell, Reece, et al, "Biology",
8th edition, 2008, p162-184.
5. ^ Campbell,
Reece, et al, "Biology", 8th edition,
2008, p162-184.
6. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p162-184.
7. ^
Campbell, Reece, et al, "Biology", 8th
edition, 2008, p162-184.
8. ^ Campbell, Reece, et
al, "Biology", 8th edition, 2008,
p170,176.
9. ^ Ted Huntington.
10. ^ Campbell, Reece, et al,
"Biology", 8th edition, 2008, p170.
 
[1] Rickettsia prowazekii COPYRIGHTED
FAIR USE
source: http://en.wikipedia.org/wiki/Ima
ge:Rickettsia_prowazekii.jpg


[2] Rickettsia rickettsii in
endothelial cells of a blood vessel
from a patient with fatal RMSF (Rocky
Mounted Spotted Fever) CDC PD
source: http://www.cdc.gov/ncidod/dvrd/r
msf/Laboratory.htm

3,850,000,000 YBN
26
36)
FOOTNOTES
1. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html
AND
http://www.nature.com/nature/journal/v
384/n6604/pdf/384055a0.pdf
2. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

3. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

4. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

5. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

6. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

7. ^ "apatite." Britannica Concise
Encyclopedia. Encyclopædia Britannica,
Inc., 1994-2010. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/apatite
8. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

9. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

10. ^ "apatite." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 04
Mar. 2012.
http://www.answers.com/topic/apatite
11. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

12. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

13. ^ "apatite." Britannica Concise
Encyclopedia. Encyclopædia Britannica,
Inc., 1994-2010. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/apatite
14. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

15. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

16. ^ "apatite." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 04
Mar. 2012.
http://www.answers.com/topic/apatite
17. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

18. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

19. ^ "apatite." Britannica Concise
Encyclopedia. Encyclopædia Britannica,
Inc., 1994-2010. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/apatite
20. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

21. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

22. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

23. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

24. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

25. ^
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

26. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html
AND
http://www.nature.com/nature/journal/v
384/n6604/pdf/384055a0.pdf

MORE INFO
[1] "Banded iron formation."
McGraw-Hill Dictionary of Scientific
and Technical Terms. McGraw-Hill
Companies, Inc., 2003. Answers.com 11
Jul. 2011.
http://www.answers.com/topic/banded-iron
-formation

[2] Mojzsis, S. J. et al. "Evidence for
Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html

AND http://www.nature.com/nature/journa
l/v384/n6604/pdf/384055a0.pdf
Akilia Island, Western Greenland24 25
 

[1] Figure 1 from: Mojzsis, S. J. et
al. ''Evidence for Life on Earth Before
3,800 Million Years Ago.'' Nature
384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html COP
YRIGHTED
source: http://www.nature.com/nature/jou
rnal/v384/n6604/pdf/384055a0.pdf


[2] Figure 1 from: Mojzsis, S. J. et
al. ''Evidence for Life on Earth Before
3,800 Million Years Ago.'' Nature
384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html COP
YRIGHTED
source: http://www.nature.com/nature/jou
rnal/v384/n6604/pdf/384055a0.pdf

3,850,000,000 YBN
28
45) Oldest sediment, the Banded Iron
Formation begins.22
Banded Iron
Formation is sedimentary rock that
spans from 3.8 to 1.8 billion years
ago, made of iron-rich silicates (like
silicon dioxide SiO2) with alternating
layers of black colored ferrous
(reduced) iron and red colored ferric
(oxidized) iron23 24 and represents a
seasonal cycle where the quantity of
free oxygen in the ocean rises and
falls, possibly linked to
photosynthetic organisms.25 26
FOOTNOTE
S
1. ^ Mojzsis, et al. nature nov 7,
1996
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v384/n6604/index
.html,
2:102,
2. ^ Mojzsis, et al. nature nov
7, 1996
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v384/n6604/index
.html,
2:102,
3. ^ Cesare Emiliani, Plant
Earth 1992:407f, and Tjeerd van Andel,
New Views on an Old Planet 2nd ed.
1994:303-05. http://books.google.com/bo
oks?id=R6b3skeNXrgC

4. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
5. ^ Konhauser,
Kurt O. et al. “Could Bacteria Have
Formed the Precambrian Banded Iron
Formations?” Geology 30.12 (2002):
1079 -1082.
Print. http://geology.geoscienceworld.o
rg/content/30/12/1079.abstract

6. ^ Kappler, Andreas et al.
“Deposition of Banded Iron Formations
by Anoxygenic Phototrophic
Fe(II)-oxidizing Bacteria.” Geology
33.11 (2005): 865 -868.
Print. http://geology.geoscienceworld.o
rg/content/33/11/865.abstract

7. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
8. ^ Cesare
Emiliani, Plant Earth 1992:407f, and
Tjeerd van Andel, New Views on an Old
Planet 2nd ed.
1994:303-05. http://books.google.com/bo
oks?id=R6b3skeNXrgC

9. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
10. ^
Konhauser, Kurt O. et al. “Could
Bacteria Have Formed the Precambrian
Banded Iron Formations?” Geology
30.12 (2002): 1079 -1082.
Print. http://geology.geoscienceworld.o
rg/content/30/12/1079.abstract

11. ^ Kappler, Andreas et al.
“Deposition of Banded Iron Formations
by Anoxygenic Phototrophic
Fe(II)-oxidizing Bacteria.” Geology
33.11 (2005): 865 -868.
Print. http://geology.geoscienceworld.o
rg/content/33/11/865.abstract

12. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
13. ^ Cesare
Emiliani, Plant Earth 1992:407f, and
Tjeerd van Andel, New Views on an Old
Planet 2nd ed.
1994:303-05. http://books.google.com/bo
oks?id=R6b3skeNXrgC

14. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
15. ^
Konhauser, Kurt O. et al. “Could
Bacteria Have Formed the Precambrian
Banded Iron Formations?” Geology
30.12 (2002): 1079 -1082.
Print. http://geology.geoscienceworld.o
rg/content/30/12/1079.abstract

16. ^ Kappler, Andreas et al.
“Deposition of Banded Iron Formations
by Anoxygenic Phototrophic
Fe(II)-oxidizing Bacteria.” Geology
33.11 (2005): 865 -868.
Print. http://geology.geoscienceworld.o
rg/content/33/11/865.abstract

17. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
18. ^ Cesare
Emiliani, Plant Earth 1992:407f, and
Tjeerd van Andel, New Views on an Old
Planet 2nd ed.
1994:303-05. http://books.google.com/bo
oks?id=R6b3skeNXrgC

19. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
20. ^
Konhauser, Kurt O. et al. “Could
Bacteria Have Formed the Precambrian
Banded Iron Formations?” Geology
30.12 (2002): 1079 -1082.
Print. http://geology.geoscienceworld.o
rg/content/30/12/1079.abstract

21. ^ Kappler, Andreas et al.
“Deposition of Banded Iron Formations
by Anoxygenic Phototrophic
Fe(II)-oxidizing Bacteria.” Geology
33.11 (2005): 865 -868.
Print. http://geology.geoscienceworld.o
rg/content/33/11/865.abstract

22. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
23. ^ Cesare
Emiliani, Plant Earth 1992:407f, and
Tjeerd van Andel, New Views on an Old
Planet 2nd ed.
1994:303-05. http://books.google.com/bo
oks?id=R6b3skeNXrgC

24. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
25. ^
Konhauser, Kurt O. et al. “Could
Bacteria Have Formed the Precambrian
Banded Iron Formations?” Geology
30.12 (2002): 1079 -1082.
Print. http://geology.geoscienceworld.o
rg/content/30/12/1079.abstract

26. ^ Kappler, Andreas et al.
“Deposition of Banded Iron Formations
by Anoxygenic Phototrophic
Fe(II)-oxidizing Bacteria.” Geology
33.11 (2005): 865 -868.
Print. http://geology.geoscienceworld.o
rg/content/33/11/865.abstract

27. ^ Mojzsis, et al. nature nov 7,
1996
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v384/n6604/index
.html,
2:102,
28. ^ Mojzsis, et al. nature nov
7, 1996
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v384/n6604/index
.html,
2:102, {3850 MYBN}

MORE INFO
[1] Roger Lewin, "Thread of
Life", (New York: Smithsonian Books,
1982). p102
[2]
http://jersey.uoregon.edu/~mstrick/Rogue
ComCollege/RCC_Lectures/Banded_Iron.html

[3] "Banded iron formation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Banded_iron
_formation

Akilia Island, Western Greenland27
 

[1] image of BIF from Akilia from
Nature COPYRIGHTED
source: nature 11/7/96


[2] portion taken
from: Description English: This
image shows a 2.1 billion years old
rock containing black-banded ironstone,
which has a weight of about 8.5 tons.
The approximately two meter high, three
meter wide, and one meter thick block
of stone was found in North America and
belongs to the National Museum of
Mineralogy and Geology in Dresden,
Germany. The rock is located at
+51°2'34.84''
+13°45'26.67''. Deutsch: Dieses Bild
zeigt einen etwa 8,5 Tonnen schweren
und 2,1 Milliarden Jahre alten Block
mit Bändereisenerzen. Der etwa zwei
Meter hohe, drei Meter breite und einen
Meter tiefe Gesteinsblock wurde in
Nordamerika gefunden und gehört dem
Staatlichen Museum für Mineralogie und
Geologie Dresden. Der Block befindet
sich bei den Koordinaten +51°2'34.84''
+13°45'26.67''. Camera
data Camera Nikon D70 Lens Tamron
SP AF 90mm/2.8 Di Macro 1:1 Focal
length 90 mm Aperture f/2.8 Exposure
time 1/250 s Sensivity ISO 200 Please
help translating the description into
more languages. Thanks a lot! If
you want a license with the conditions
of your choice, please email me to
negotiate terms. best new
image Date 26 August
2005 Source Own
work Author André Karwath aka
Aka CC
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/5/5f/Black-band_iron
stone_%28aka%29.jpg/1280px-Black-band_ir
onstone_%28aka%29.jpg

3,850,000,000 YBN
8 9
189) Possible earliest fossils.
Microstructures from Isua Banded iron
formation, Southerwest Greenland.3 4
Because of the simple shape, the biotic
nature of these fossils is not
certain.5
FOOTNOTES
1. ^ Hans D. Pflug, "Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy", Precambrian
Research, Volume 106, Issues 1-2, 1
February 2001, Pages
79-91. http://www.sciencedirect.com/sci
ence/article/pii/S0301926800001261

2. ^ Schopf, J.W., 1993. Microfossils
from the early Archean Apex chert: New
evidence of the antiquity of life.
Science 260, pp. 640-646.
http://www.jstor.org/stable/2881249
3. ^ Hans D. Pflug, "Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy", Precambrian
Research, Volume 106, Issues 1-2, 1
February 2001, Pages
79-91. http://www.sciencedirect.com/sci
ence/article/pii/S0301926800001261

4. ^ Schopf, J.W., 1993. Microfossils
from the early Archean Apex chert: New
evidence of the antiquity of life.
Science 260, pp. 640-646.
http://www.jstor.org/stable/2881249
5. ^ Schopf, J.W., 1993. Microfossils
from the early Archean Apex chert: New
evidence of the antiquity of life.
Science 260, pp. 640-646.
http://www.jstor.org/stable/2881249
6. ^ Hans D. Pflug, "Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy", Precambrian
Research, Volume 106, Issues 1-2, 1
February 2001, Pages
79-91. http://www.sciencedirect.com/sci
ence/article/pii/S0301926800001261

7. ^ H.D. Pflug, "Early diversification
of life in the Archean", Zbl. Bakt.
Hyg. I.Abt. Orig., C3 (1982), pp.
53–64
8. ^ Hans D. Pflug, "Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy", Precambrian
Research, Volume 106, Issues 1-2, 1
February 2001, Pages
79-91. http://www.sciencedirect.com/sci
ence/article/pii/S0301926800001261

9. ^ H.D. Pflug, "Early diversification
of life in the Archean", Zbl. Bakt.
Hyg. I.Abt. Orig., C3 (1982), pp.
53–64

MORE INFO
[1] B. Nagy, J.E. Zumberge, L.A.
Nagy, "Abiotic, graphitic
microstructures in micaceous
metaquarzite about 3760 million years
old from southwestern Greenland:
Implications for early Precambrian
microfossils", Proc. Natl. Acad. Sci.
Wash., 72 (1975), pp.
1206–1209 http://www.pnas.org/content
/72/3/1206.full.pdf

(Isua BIF) SW Greenland6 7  
[1] Fig. 5. (a) Carbonaceous
microstructure from Isua Banded iron
formation, SW-Greenland (ca 3.85 Ga).
(b) Laser mass spectrum (negative ions)
from similar specimen. Field of
measurement ca 1 μm
diameter. COPYRIGHTED
source: http://ars.sciencedirect.com/con
tent/image/1-s2.0-S0301926800001261-gr5.
jpg


[2] Fig. 5. (a) Carbonaceous
microstructure from Isua Banded iron
formation, SW-Greenland (ca 3.85 Ga).
(b) Laser mass spectrum (negative ions)
from similar specimen. Field of
measurement ca 1 small mu, Greekm
diameter. COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence?_ob=MiamiCaptionURL&_method=retriev
e&_udi=B6VBP-42G6M5T-7&_image=fig7&_ba=7
&_user=4422&_coverDate=02%2F01%2F2001&_f
mt=full&_orig=browse&_cdi=5932&view=c&_a
cct=C000059600&_version=1&_urlVersion=0&
_userid=4422&md5=fe1052cbc18dba545ec95c2
e7ff3090b

3,800,000,000 YBN
10
185)
FOOTNOTES
1. ^
http://www.ucmp.berkeley.edu/archaea/arc
haeafr.html

2. ^ Jürgen Hahn & Pat Haug. 1986.
Traces of Archaebacteria in ancient
sediments. Systematic and Applied
Microbiology 7: 178-183.
(Archaebacteria '85 Proceedings).
http://www.sciencedirect.com/science/a
rticle/pii/S0723202086800029

3. ^
http://www.ucmp.berkeley.edu/archaea/arc
haeafr.html

4. ^ Jürgen Hahn & Pat Haug. 1986.
Traces of Archaebacteria in ancient
sediments. Systematic and Applied
Microbiology 7: 178-183.
(Archaebacteria '85 Proceedings).
http://www.sciencedirect.com/science/a
rticle/pii/S0723202086800029

5. ^
http://www.ucmp.berkeley.edu/archaea/arc
haeafr.html

6. ^ Jürgen Hahn & Pat Haug. 1986.
Traces of Archaebacteria in ancient
sediments. Systematic and Applied
Microbiology 7: 178-183.
(Archaebacteria '85 Proceedings).
http://www.sciencedirect.com/science/a
rticle/pii/S0723202086800029

7. ^
http://www.ucmp.berkeley.edu/archaea/arc
haeafr.html

8. ^ Jürgen Hahn & Pat Haug. 1986.
Traces of Archaebacteria in ancient
sediments. Systematic and Applied
Microbiology 7: 178-183.
(Archaebacteria '85 Proceedings).
http://www.sciencedirect.com/science/a
rticle/pii/S0723202086800029

9. ^
http://www.ucmp.berkeley.edu/archaea/arc
haeafr.html

10. ^
http://www.ucmp.berkeley.edu/archaea/arc
haeafr.html

Isua, Greenland9  
[1] English: Isopentenyl pyrophosphate;
IPP; isopentenyl diphosphate;
isopentenyl-ppi Deutsch:
Isopentenylpyrophosphat;
Isopentenyldiphosphat Date 24.
November Source Own
work Author Yikrazuul PD
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/8/8a/Isopentenyl_pyr
ophosphate.svg/1000px-Isopentenyl_pyroph
osphate.svg.png

3,700,000,000 YBN
5
184)
FOOTNOTES
1. ^ Minik T. Rosing and Robert Frei,
"U-rich Archaean sea-floor sediments
from Greenland - indications of >3700
Ma oxygenic photosynthesis", Earth and
Planetary Science Letters, Volume 217,
Issues 3-4 , 15 January 2004, Pages
237-244
http://www.sciencedirect.com/science/a
rticle/pii/S0012821X03006095

2. ^ Minik T. Rosing and Robert Frei,
"U-rich Archaean sea-floor sediments
from Greenland - indications of >3700
Ma oxygenic photosynthesis", Earth and
Planetary Science Letters, Volume 217,
Issues 3-4 , 15 January 2004, Pages
237-244
http://www.sciencedirect.com/science/a
rticle/pii/S0012821X03006095

3. ^ Minik T. Rosing and Robert Frei,
"U-rich Archaean sea-floor sediments
from Greenland - indications of >3700
Ma oxygenic photosynthesis", Earth and
Planetary Science Letters, Volume 217,
Issues 3-4 , 15 January 2004, Pages
237-244
http://www.sciencedirect.com/science/a
rticle/pii/S0012821X03006095

4. ^ Minik T. Rosing and Robert Frei,
"U-rich Archaean sea-floor sediments
from Greenland - indications of >3700
Ma oxygenic photosynthesis", Earth and
Planetary Science Letters, Volume 217,
Issues 3-4 , 15 January 2004, Pages
237-244
http://www.sciencedirect.com/science/a
rticle/pii/S0012821X03006095

5. ^ Minik T. Rosing and Robert Frei,
"U-rich Archaean sea-floor sediments
from Greenland - indications of >3700
Ma oxygenic photosynthesis", Earth and
Planetary Science Letters, Volume 217,
Issues 3-4 , 15 January 2004, Pages
237-244
http://www.sciencedirect.com/science/a
rticle/pii/S0012821X03006095

Isua, Greenland4  
[1] Fig. 1. (c) Close-up of the region
near the Stacey and Kramers growth
curve showing the intersection of the
errorchron defined by the metasediment
samples and an isochron defined by all
possible Pb compositions at 2800 Ma of
systems derived from the Stacey and
Kramers growth curve at 3700 Ma. This
intersection is the model initial
composition for the samples at 2800 Ma.
The position above the growth curve
indicates that the samples evolved with
high μ (238U/204Pb) values of 22
during the time span from 3700 to 2800
Ma. COPYRIGHTED
source: http://ars.sciencedirect.com/con
tent/image/1-s2.0-S0012821X03006095-gr1.
gif


[2] Fig. 1. (a) 207Pb/204Pb versus
206Pb/204Pb for eight samples of >3700
Ma pelagic sediment from Isua, West
Greenland, shown with open diamonds.
Analytical uncertainty is less than the
size of the symbols. The Stacey and
Kramers growth curve for average
crustal Pb [24] is shown for
comparison. The age of the errorchron
which has a MSWD=52 is calculated using
Isoplot [23]. The high MSWD value
indicates that the Pb isotopic
composition of the sample suite was not
perfectly homogeneous at 2800 Ma. (b)
Pb isotopic data for the whole rock
samples shown in panel a and their HCl
leachates and leach residues in the
range 206Pb/204Pb=0–75 and
207Pb/204Pb=10–25 (filled circles).
The full dataset is shown in the inset.
In open circles are data for banded
iron formation and metabasalt samples
from the same supracrustal segment as
the carbon-rich metasediments. These
samples plot along a parallel reference
isochron, but originate at the Stacey
and Kramers growth curve, which
indicates that they evolved with
‘normal’ μ (238U/204Pb) values
during the time span from 3700 to 2800
Ma. (c) Close-up of the region near the
Stacey and Kramers growth curve showing
the intersection of the errorchron
defined by the metasediment samples and
an isochron defined by all possible Pb
compositions at 2800 Ma of systems
derived from the Stacey and Kramers
growth curve at 3700 Ma. This
intersection is the model initial
composition for the samples at 2800 Ma.
The position above the growth curve
indicates that the samples evolved with
high μ (238U/204Pb) values of 22
during the time span from 3700 to 2800
Ma. (d) 206Pb/204Pb versus 208Pb/204Pb
for the sample suite. The samples show
some scatter about a regression line,
which passes to the right of the Stacey
and Kramers growth curve. This
indicates that the metasediments
evolved with low Th/U ratios. At the
initial 206Pb/204Pb composition derived
from panel b, the 208Pb/204Pb value at
the regression line is 31, which is
less radiogenic than the Stacey and
Kramers model value at 3700 Ma. This
indicates that the samples evolved with
virtually no Th during the early
Archaean. (e) 206Pb/204Pb versus
208Pb/204Pb for whole rock samples, HCl
leachates and residues. The residues
are highlighted in filled diamonds, and
are characterized by low thorogenic Pb
and a shallow array indicative of a low
Th/U ratio, while the leachates shown
in open circles are extremely
radiogenic, with high Th/U evolutions.
Whole rock samples are shown with
crosses. The model initial Pb
composition at 2769 Ma is shown as the
open square at the apex of the
fan-shaped data array to the right of
the Stacey and Kramers growth
curve. COPYRIGHTED
source: http://ars.sciencedirect.com/con
tent/image/1-s2.0-S0012821X03006095-gr1.
gif

3,700,000,000 YBN
5
215) The Carbon-13 to Carbon-12 ratio
in 3700+ million year old carbon grains
is consistent with biotic remains,
possibly the remains of planktonic
photosynthesizing organisms.2 These
carbon-13 "depleted" grains support
the earlier finding by Mojzsis et al of
carbon-13 to carbon-12 ratios that
imply living objects on Greenland
earlier than 3850 million years before
now.3
FOOTNOTES
1. ^ Minik T. Rosing, "13C-Depleted
Carbon Microparticles in >3700-Ma
Sea-Floor Sedimentary Rocks from West
Greenland", Science 29 January 1999:
Vol. 283. no. 5402, pp. 674 -
676 http://www.sciencemag.org/cgi/conte
nt/full/283/5402/674

2. ^ Minik T. Rosing, "13C-Depleted
Carbon Microparticles in >3700-Ma
Sea-Floor Sedimentary Rocks from West
Greenland", Science 29 January 1999:
Vol. 283. no. 5402, pp. 674 -
676 http://www.sciencemag.org/cgi/conte
nt/full/283/5402/674

3. ^ Mojzsis, S. J. et al. "Evidence
for Life on Earth Before 3,800 Million
Years Ago." Nature 384.6604 (1996):
55–59. http://www.nature.com/nature/j
ournal/v384/n6604/abs/384055a0.html
AND
http://www.nature.com/nature/journal/v
384/n6604/pdf/384055a0.pdf
4. ^ Minik T. Rosing, "13C-Depleted
Carbon Microparticles in >3700-Ma
Sea-Floor Sedimentary Rocks from West
Greenland", Science 29 January 1999:
Vol. 283. no. 5402, pp. 674 -
676 http://www.sciencemag.org/cgi/conte
nt/full/283/5402/674

5. ^ Minik T. Rosing, "13C-Depleted
Carbon Microparticles in >3700-Ma
Sea-Floor Sedimentary Rocks from West
Greenland", Science 29 January 1999:
Vol. 283. no. 5402, pp. 674 -
676 http://www.sciencemag.org/cgi/conte
nt/full/283/5402/674

Isua, Greenland4  
[1] Figure 1. (A) Turbidite sedimentary
rocks from the Isua supracrustal belt,
west Greenland. The notebook is 17 cm
wide. (B) A close-up of finely
laminated slate representing pelagic
mud. The hammer is 70 cm long. (C)
Photomicrograph of sample 810213,
showing finely laminated pelagic mud.
The variation in color is mainly due to
variations in C abundance. (D)
Photomicrograph of C grains arranged
along a buckled stringer. (E)
Backscattered electron image of a
polished surface (sample 810213),
showing the distribution of C grains as
black areas. (F) Backscattered electron
image of a polished surface (sample
810213), showing the rounded shape of C
grains (black). COPYRIGHTED
source: http://www.sciencemag.org/conten
t/283/5402/674.full.pdf


[2] Figure 1. (A) Turbidite
sedimentary rocks from the Isua
supracrustal belt, west Greenland. The
notebook is 17 cm wide. (B) A close-up
of finely laminated slate representing
pelagic mud. The hammer is 70 cm long.
(C) Photomicrograph of sample 810213,
showing finely laminated pelagic mud.
The variation in color is mainly due to
variations in C abundance. (D)
Photomicrograph of C grains arranged
along a buckled stringer. (E)
Backscattered electron image of a
polished surface (sample 810213),
showing the distribution of C grains as
black areas. (F) Backscattered electron
image of a polished surface (sample
810213), showing the rounded shape of C
grains (black).
source: http://www.sciencemag.org/cgi/co
ntent/full/283/5402/674

3,500,000,000 YBN
7 8
37)
FOOTNOTES
1. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

2. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

3. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

4. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

5. ^ Inaki Ruiz-Trillo, Gertraud
Burger, Peter W.H. Holland, Nicole
King, B. Franz Lang, Andrew J. Roger,
Michael W. Gray, The origins of
multicellularity: a multi-taxon genome
initiative, Trends in Genetics, Volume
23, Issue 3, March 2007, Pages 113-118,
ISSN 0168-9525, DOI:
10.1016/j.tig.2007.01.005. (http://www.
sciencedirect.com/science/article/pii/S0
168952507000236)

6. ^ Knoll, Andrew H. “The Multiple
Origins of Complex Multicellularity.”
Annu. Rev. Earth Planet. Sci. 39.1
(2011):
217-239. http://www.annualreviews.org/d
oi/abs/10.1146/annurev.earth.031208.1002
09

7. ^ Bonner J. T. 1998 The origins of
multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

8. ^ Ted Huntington.

MORE INFO
[1] Grosberg R. K., Strathmann R.
R. 2007 The evolution of
multicellularity: a minor major
transition? Ann. Rev. Ecol. Evol. Syst.
38, 621–654.
(doi:10.1146/annurev.ecolsys.36.102403.1
14735)
http://www.annualreviews.org/doi/abs/1
0.1146/annurev.ecolsys.36.102403.114735

[2] Rokas A. 2008 The origins of
multicellularity and the early history
of the genetic toolkit for animal
development. Ann. Rev. Genet. 42,
235–251.
(doi:10.1146/annurev.genet.42.110807.091
513) http://apps.webofknowledge.com/Inb
oundService.do?UT=000261767000011&IsProd
uctCode=Yes&mode=FullRecord&product=WOS&
SID=1EHDdbNiNf4NO8nC299&smartRedirect=ye
s&SrcApp=CR&DestFail=http%3A%2F%2Fwww.we
bofknowledge.com%3FDestApp%3DCEL%26DestP
arams%3D%253Faction%253Dretrieve%2526mod
e%253DFullRecord%2526product%253DCEL%252
6UT%253D000261767000011%2526customersID%
253DHighwire%26e%3DQZIAIzGgKoYbxc_i_WNam
laqQ0.s968BNEwQvqhM9p.770dFYju0AbJCFAAcj
orA%26SrcApp%3DHighwire%26SrcAuth%3DHigh
wire&action=retrieve&Init=Yes&SrcAuth=Hi
ghwire&customersID=Highwire&Func=Frame

 
[1] Microgram of filamentous bacteria
from flexible setae. (Courtesy
Zoosystema © 2005) COPYRIGHTED
source: http://bioweb.uwlax.edu/bio203/s
2009/decker_rour/images/yeti-crab-filame
ntous-bacteria.JPG


[2] Filamentous Bacteria Microthrix
Parvicella UNKNOWN
source: http://ebsbiowizard.com/wp-conte
nt/gallery/filamentous-bacteria-microthr
ix-parvicella/filamentous-bacteria-micro
thrix-parvicella.jpg

3,500,000,000 YBN
11 12
39)
FOOTNOTES
1. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

2. ^ Walter, M. R., R. Buick, and J. S.
R. Dunlop. "Stromatolites 3,400-3,500
Myr Old from the North Pole Area,
Western Australia." Nature 284.5755
(1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

3. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

4. ^ Walter, M. R., R. Buick, and J. S.
R. Dunlop. "Stromatolites 3,400-3,500
Myr Old from the North Pole Area,
Western Australia." Nature 284.5755
(1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

5. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

6. ^ Walter, M. R., R. Buick, and J. S.
R. Dunlop. "Stromatolites 3,400-3,500
Myr Old from the North Pole Area,
Western Australia." Nature 284.5755
(1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

7. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

8. ^ Walter, M. R., R. Buick, and J. S.
R. Dunlop. "Stromatolites 3,400-3,500
Myr Old from the North Pole Area,
Western Australia." Nature 284.5755
(1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

9. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

10. ^ Walter, M. R., R. Buick, and J.
S. R. Dunlop. "Stromatolites
3,400-3,500 Myr Old from the North Pole
Area, Western Australia." Nature
284.5755 (1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

11. ^ Walter, M. R., R. Buick, and J.
S. R. Dunlop. "Stromatolites
3,400-3,500 Myr Old from the North Pole
Area, Western Australia." Nature
284.5755 (1980):
443–445. http://www.nature.com/nature
/journal/v284/n5755/abs/284441a0.html

12. ^ Byerly, Gary R., Donald R. Lower,
and Maud M. Walsh. "Stromatolites from
the 3,300-3,500-Myr Swaziland
Supergroup, Barberton Mountain Land,
South Africa." Nature 319.6053 (1986):
489–491. http://www.nature.com/nature
/journal/v319/n6053/abs/319489a0.html

Warrawoona, Western Australia, and, Fig
Tree Group, South Africa9 10  

[1] image on left is from swaziland
source: nature feb 6


[2]
source: 1986

3,500,000,000 YBN
24 25 26 27
287)
FOOTNOTES
1. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

2. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

3. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

4. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

5. ^ Record ID81. Universe, Life,
Science, Future. Ted Huntington.
6. ^ Schopf, J. W.
Microfossils of the Early Archean Apex
chert: new evidence of the antiquity of
life. Science 260, 640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

7. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

8. ^ Record ID81. Universe, Life,
Science, Future. Ted Huntington.
9. ^ Schopf, J. W.
Microfossils of the Early Archean Apex
chert: new evidence of the antiquity of
life. Science 260, 640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

10. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

11. ^ Walsh, Maud M., and Donald R.
Lowe. "Filamentous Microfossils from
the 3,500-Myr-old Onverwacht Group,
Barberton Mountain Land, South Africa."
Nature 314.6011 (1985):
530–532. http://www.nature.com/nature
/journal/v314/n6011/abs/314530a0.html

12. ^ Record ID81. Universe, Life,
Science, Future. Ted Huntington.
13. ^ Schopf, J.
W. Microfossils of the Early Archean
Apex chert: new evidence of the
antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

14. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

15. ^ Walsh, Maud M., and Donald R.
Lowe. "Filamentous Microfossils from
the 3,500-Myr-old Onverwacht Group,
Barberton Mountain Land, South Africa."
Nature 314.6011 (1985):
530–532. http://www.nature.com/nature
/journal/v314/n6011/abs/314530a0.html

16. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

17. ^ Walsh, Maud M., and Donald R.
Lowe. "Filamentous Microfossils from
the 3,500-Myr-old Onverwacht Group,
Barberton Mountain Land, South Africa."
Nature 314.6011 (1985):
530–532. http://www.nature.com/nature
/journal/v314/n6011/abs/314530a0.html

18. ^ argues that these are not
fossils: http://www.nature.com/nature/j
ournal/v420/n6915/full/420476b.html

"we contend that the Raman spectra of
Schopf et al.1 indicate that these are
disordered carbonaceous materials of
indeterminate origin. We maintain that
Raman spectroscopy cannot be used to
identify microfossils unambiguously,
although it is a useful technique for
pinpointing promising microscopic
entities for further investigation."
19. ^
http://www.nature.com/news/2002/020304/f
ull/020304-6.html
"Gloves are coming
off in ancient bacteria bust-up." 2002
20. ^
http://www.nature.com/nature/journal/v41
6/n6876/full/416076a.html
braiser et
al. "Questioning the evidence for
Earth's oldest fossils"
21. ^ Record ID81.
Universe, Life, Science, Future. Ted
Huntington.
22. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html

23. ^ Walsh, Maud M., and Donald R.
Lowe. "Filamentous Microfossils from
the 3,500-Myr-old Onverwacht Group,
Barberton Mountain Land, South Africa."
Nature 314.6011 (1985):
530–532. http://www.nature.com/nature
/journal/v314/n6011/abs/314530a0.html

24. ^ Walsh, Maud M., and Donald R.
Lowe. "Filamentous Microfossils from
the 3,500-Myr-old Onverwacht Group,
Barberton Mountain Land, South Africa."
Nature 314.6011 (1985):
530–532. http://www.nature.com/nature
/journal/v314/n6011/abs/314530a0.html

25. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

26. ^ Schopf, J. W. Microfossils of the
Early Archean Apex chert: new evidence
of the antiquity of life. Science 260,
640−646
(1993). http://www.sciencemag.org/conte
nt/260/5108/640

AND http://www.jstor.org/stable/2881249

27. ^ Schopf, J. William et al.
"Laser-Raman Imagery of Earth’s
Earliest Fossils." Nature 416.6876
(2002):
73–76. http://www.nature.com/nature/j
ournal/v416/n6876/abs/416073a.html


MORE INFO
[1] BIO415 (Author? University?)
Multicelluarity.pdf (t3:
multicellularity of cyanobacteria)
[2] t3:
http://www.mansfield.ohio-state.edu/~sab
edon/biol3018.htm
multicellularity.
"Some cyanobacteria species exist in a
truly, though primitive, multicellular
form in which cellular differentiation
occurs."
Warrawoona, northwestern Western
Australia22 and Onverwacht Group,
Barberton Mountain Land, South Africa23
 

[1] Figure 1 Optical photomicrographs
showing carbonaceous (kerogenous)
filamentous microbial fossils in
petrographic thin sections of
Precambrian cherts. Scale in a
represents images in a and c-i; scale
in b represents image in b. All parts
show photomontages, which is
necessitated by the three-dimensional
preservation of the cylindrical sinuous
permineralized microbes. Squares in
each part indicate the areas for which
chemical data are presented in Figs 2
and 3. a, An unnamed cylindrical
prokaryotic filament, probably the
degraded cellular trichome or tubular
sheath of an oscillatoriacean
cyanobacterium, from the 770-Myr
Skillogalee Dolomite of South
Australia12. b, Gunflintia grandis, a
cellular probably oscillatoriacean
trichome, from the 2,100-Myr Gunflint
Formation of Ontario, Canada13. c, d,
Unnamed highly carbonized filamentous
prokaryotes from the 3,375-Myr Kromberg
Formation of South Africa14: the poorly
preserved cylindrical trichome of a
noncyanobacterial or oscillatoriacean
prokaryote (c); the disrupted,
originally cellular trichomic remnants
possibly of an Oscillatoria- or
Lyngbya-like cyanobacterium (d). e-i,
Cellular microbial filaments from the
3,465-Myr Apex chert of northwestern
Western Australia: Primaevifilum
amoenum4,5, from the collections of The
Natural History Museum (TNHM), London,
specimen V.63164[6] (e); P. amoenum4
(f); the holotype of P.
delicatulum4,5,15, TNHM V.63165[2] (g);
P. conicoterminatum5, TNHM V63164[9]
(h); the holotype of Eoleptonema apex5,
TNHM V.63729[1] (i).
source: Nature416


[2] Fig. 3 Filamentous microfossils:
a, cylindrical microfossil from
Hooggenoeg sample; b, threadlike and
tubular filaments extending between
laminae, Kromberg sample; c,d,e,
tubular filamnets oriented subparallel
to bedding, Kromberg sample; f,
threadlike filament flattened parallel
to bedding, Kromberg sample.
source: 73 - 76 (07 Mar 2002) Letters
to Nature
http://www.nature.com/nature/journal/v41
6/n6876/fig_tab/416073a_F1.html

3,500,000,000 YBN
4 5
289)
FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
2. ^ Carl R. Woese,
"Bacterial Evolution", Microbiological
Reviews, June 1877, p. 221-271.
woese1987b.pdf
3. ^ Javaux, Emmanuelle J., Craig P.
Marshall, and Andrey Bekker.
“Organic-walled microfossils in
3.2-billion-year-old shallow-marine
siliciclastic deposits.” Nature
463.7283 (2010):
934-938. http://www.nature.com/nature/j
ournal/v463/n7283/full/nature08793.html

4. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
5. ^ Carl R. Woese,
"Bacterial Evolution", Microbiological
Reviews, June 1877, p. 221-271.
woese1987b.pdf
  
3,470,000,000 YBN
5
182)
FOOTNOTES
1. ^
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v410/n6824/full/
410077a0_fs.html

2. ^
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v410/n6824/full/
410077a0_fs.html

3. ^ Ted Huntington.
4. ^
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v410/n6824/full/
410077a0_fs.html

5. ^
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v410/n6824/full/
410077a0_fs.html

North Pole, Australia4  
[1] get larger image
source: file:///root/web/fossils_biomark
er_science_v67_i22_nov_15_2003.html#bib9
9

3,430,000,000 YBN
1
833)
FOOTNOTES
1. ^
http://www.nature.com/nature/journal/v44
1/n7094/full/nature04764.html

 
[1] a-c, 'Encrusting/domical
laminites'; d-f, 'small crested/conical
laminites'; g-i, 'cuspate swales'; j-l,
'large complex cones' (dashed lines in
k trace lamina shape and show outlines
of intraclast conglomerate piled
against the cone at two levels). m-o,
'Egg-carton laminites'; p, q, 'wavy
laminites'; r-t, 'iron-rich laminites'
(t is a cut slab). The scale card in b,
h and i is 18 cm. The scale card
increments in c, e, k, l, n and s are 1
cm. The scale bar in o is about 1 cm.
The scale bars in the remaining
pictures are about 5 cm. COPYRIGHTED
source: http://www.nature.com/nature/jou
rnal/v441/n7094/fig_tab/nature04764_F1.h
tml

3,416,000,000 YBN
2
218)
FOOTNOTES
1. ^
http://www.nature.com/nature/journal/v43
1/n7008/full/nature02888.html

2. ^
http://www.nature.com/nature/journal/v43
1/n7008/full/nature02888.html

 
[1] a, Dark carbonaceous laminations
draping an underlying coarse detrital
carbonaceous grain (a), showing
internal anastomosing and draping
character (b) and, at the top (c)
draping irregularities in underlying
carbonaceous laminations. b, Dark
carbonaceous laminations that have been
eroded and rolled up by currents. c,
Bundled filaments in the rolled
laminations in b [tp: they should
have clearly indicated that they are
saying that these filaments are
bacteria].
source: http://www.nature.com/nature/jou
rnal/v431/n7008/fig_tab/nature02888_F4.h
tml

3,400,000,000 YBN
10
190) Earliest fossils of coccoid
{KoKOED7 } (spherical) bacteria from
the Kromberg Formation, Swaziland
System, South Africa.8
FOOTNOTES
1. ^ "coccoid." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 04
Mar. 2012.
http://www.answers.com/topic/coccoid
2. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

3. ^ "coccoid." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/coccoid
4. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

5. ^ "coccoid." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/coccoid
6. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

7. ^ "coccoid." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 04 Mar.
2012.
http://www.answers.com/topic/coccoid
8. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

9. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

10. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)


MORE INFO
[1] maybe evidence: Nagy, B. and
Nagy, L.A., 1969. Early Precambrian
microstructures: possibly the oldest
fossils on Earth?. Nature 223, pp.
1226-1229.?
Kromberg Formation, Swaziland System,
South Africa9  

[1] Fig. 3. from: Hans D. Pflug,
Earliest organic evolution. Essay to
the memory of Bartholomew Nagy,
Precambrian Research, Volume 106,
Issues 1–2, 1 February 2001, Pages
79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261 (a,b) Organic
microstructures from Kromberg
Formation, Swaziland System, South
Africa (ca 3.4 Ga). TEM-micrographs of
demineralized specimens. (c) Portion of
organic microstructure from Bulawaya
stromatolite (see Fig. 2). (d) Portion
of the mucilagenous sheath of recent
Anabaena sp., cyanobacteria (Fig. d
after Leak, 1967). For magnification of
Fig. c see scale of Fig.
a. COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence/article/pii/S0301926800001261


[2] Fig. 3. from: Hans D. Pflug,
Earliest organic evolution. Essay to
the memory of Bartholomew Nagy,
Precambrian Research, Volume 106,
Issues 1–2, 1 February 2001, Pages
79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261 (a,b) Organic
microstructures from Kromberg
Formation, Swaziland System, South
Africa (ca 3.4 Ga). TEM-micrographs of
demineralized specimens. (c) Portion of
organic microstructure from Bulawaya
stromatolite (see Fig. 2). (d) Portion
of the mucilagenous sheath of recent
Anabaena sp., cyanobacteria (Fig. d
after Leak, 1967). For magnification of
Fig. c see scale of Fig.
a. COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence?_ob=MiamiCaptionURL&_method=retriev
e&_udi=B6VBP-42G6M5T-7&_image=fig9&_ba=9
&_user=4422&_coverDate=02%2F01%2F2001&_f
mt=full&_orig=browse&_cdi=5932&view=c&_a
cct=C000059600&_version=1&_urlVersion=0&
_userid=4422&md5=27a45a0804747bb4b74eaac
305df2905

3,260,000,000 YBN
13
71) Earliest fossil evidence of
prokaryote reproduction by budding.8

Fossils from Swartkoppie chert, South
Africa are oldest evidence of
procaryotes that reproduce by budding
and not binary fission.9

Budding evolves in prokaryotes.10 Like
binary division, budding is a form of
asexual reproduction. However, with
budding a new individual develops from
a certain point of the parent organism.
The new individual may separate to
exist independently, or the buds may
remain attached, forming colonies.
Budding is characteristic of a few
unicellular organisms (certain
bacteria, yeasts, protozoans) but some
metazoan animals (certain cnidarian
species) regularly reproduce by
budding.11
FOOTNOTES
1. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

2. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

3. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

4. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

5. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

6. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

7. ^ "budding." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 04 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/83411/budding
>.
8. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

9. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

10. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

11. ^ "budding." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 04 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/83411/budding
>.
12. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

13. ^ Hans D. Pflug, Earliest organic
evolution. Essay to the memory of
Bartholomew Nagy, Precambrian Research,
Volume 106, Issues 1–2, 1 February
2001, Pages 79-91, ISSN 0301-9268,
10.1016/S0301-9268(00)00126-1. (http://
www.sciencedirect.com/science/article/pi
i/S0301926800001261)

Swartkoppie, South Africa12  
[1] Evolutionary relationships of model
organisms and bacteria that show
unusual reproductive strategies. This
phylogenetic tree (a) illustrates the
diversity of organisms that use the
alternative reproductive strategies
shown in (b). Bold type indicates
complete or ongoing genome projects.
Intracellular offspring are produced by
several low-GC Gram-positive bacteria
such as Metabacterium polyspora,
Epulopiscium spp. and the segmented
filamentous bacteria (SFB). Budding and
multiple fission are found in the
proteobacterial genera Hyphomonas and
Bdellovibrio, respectively. In the case
of the Cyanobacteria, Stanieria
produces baeocytes and Chamaesiphon
produces offspring by budding.
Actinoplanes produce dispersible
offspring by multiple fission of
filaments within the sporangium.
source: http://www.nature.com/nrmicro/jo
urnal/v3/n3/full/nrmicro1096_fs.html
(Nature Reviews Microbiology 3


[2] Electron micrograph of a Pirellula
bacterium from giant tiger prawn tissue
(Penaeus monodon). Notice the large
crateriform structures (C) on the cell
surface and flagella. From Fuerst et
al.
source: 214-224 (2005);
doi:10.1038/nrmicro1096)

3,235,000,000 YBN
6
68)
FOOTNOTES
1. ^ Rasmussen, Birger. "Filamentous
Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit." Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html

2. ^ Rasmussen, Birger. "Filamentous
Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit." Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html

3. ^ Rasmussen, Birger. "Filamentous
Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit." Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html

4. ^ Rasmussen, Birger. "Filamentous
Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit." Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html

5. ^ Rasmussen, Birger. "Filamentous
Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit." Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html

6. ^ Rasmussen, Birger. "Filamentous
Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit." Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html

(Sulphur Springs Deposit) Pilbara
Craton of Australia5  

[1] Photomicrographs of filaments from
the Sulphur Springs VMS deposit. Scale
bar, 10 µm. a-f, Straight, sinuous and
curved morphologies, some densely
intertwined. g, Filaments parallel to
the concentric layering. h, Filaments
oriented sub-perpendicular to
banding. Figure 3 from: Rasmussen,
Birger. ''Filamentous Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit.'' Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html C
OPYRIGHTED
source: http://www.nature.com/nature/jou
rnal/v405/n6787/abs/405676a0.html


[2] Photomicrographs of filaments from
the Sulphur Springs VMS deposit. Scale
bar, 10 µm. a-f, Straight, sinuous and
curved morphologies, some densely
intertwined. g, Filaments parallel to
the concentric layering. h, Filaments
oriented sub-perpendicular to
banding. Figure 3 from: Rasmussen,
Birger. ''Filamentous Microfossils in a
3,235-million-year-old Volcanogenic
Massive Sulphide Deposit.'' Nature
405.6787 (2000):
676–679. http://www.nature.com/nature
/journal/v405/n6787/abs/405676a0.html C
OPYRIGHTED
source: http://www.nature.com/nature/jou
rnal/v405/n6787/abs/405676a0.html

3,200,000,000 YBN
34 35 36 37 38
66) Earliest acritarch fossils
(unicellular microfossils with
uncertain affinity23 24 ). These
acritarchs are also the earliest
possible eukaryote fossils.25 26

Organic-walled microfossils of large
size (50 micrometres or more) and of
uncertain biological affinities are
known as acritarchs. The oldest known
acritarchs are from rocks of the
Moodies Group of South Africa that date
to about 3.2 billion years ago, and are
almost twice as old as the next known
acritarchs which come from
mid-Proterozoic rocks that are about
1.8 billion years old.27

Acritarchs, the name coined by Evitt in
1963 which means "of uncertain origin",
are an artificial group. The group
includes any small (most are between
20-150 microns across), organic-walled
microfossil which cannot be assigned to
a natural group. They are characterised
by varied sculpture, some being spiny
and others smooth. They are believed to
have algal affinities, probably the
cysts of planktonic eukaryotic algae.
They are valuable Proterozoic and
Palaeozoic biostratigraphic and
palaeoenvironmental tools.28

Living spherical prokaryotic cells
rarely exceed 20 microns in diameter,
but eukaryotic cells are nearly always
larger than 60 microns. Although their
precise nature is uncertain, acritarchs
appear to be phytoplankton that grew
thick coverings during a resting stage
in their life cycle. Some resemble the
resting stage of modern marine algae
known as dinoflagellates (known from
the "red tides" that periodically
poison fish and other marine
animals).29

Chitinozoa are large (50-2000 microns)
flask-shaped palynomorphs which appear
dark, almost opaque when viewed using a
light microscope. They are important
Palaeozoic microfossils as
stratigraphic markers. 30

The oldest known Acritarchs are
recorded from shales of
Palaeoproterozoic (1900-1600 Ma) age in
the former Soviet Union. They are
stratigraphically useful in the Upper
Proterozoic through to the Permian.
From Devonian times onwards the
abundance of acritarchs appears to have
declined, whether this is a reflection
of their true abundance or the volume
of scientific research is difficult to
tell.31

Although these acritarch fossils may be
from eukaryotes, they may also be from
ancestors of eukaryotes before a
nucleus existed which there may be some
genetic support for.32
FOOTNOTES
1. ^ "Acritarch." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/acritarch
2. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p194.
3. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

4. ^ Knoll AH (1992) The early
evolution of eukaryotes: a
geological perspective. Science 256:
622-627
5. ^ "Acritarch." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/acritarch
6. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p194.
7. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

8. ^ Knoll AH (1992) The early
evolution of eukaryotes: a
geological perspective. Science 256:
622-627
9. ^ "Acritarch." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/acritarch
10. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p194.
11. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

12. ^ Knoll AH (1992) The early
evolution of eukaryotes: a
geological perspective. Science 256:
622-627
13. ^ "Acritarch." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/acritarch
14. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p194.
15. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

16. ^ Knoll AH (1992) The early
evolution of eukaryotes: a
geological perspective. Science 256:
622-627
17. ^ Buick, R. . (2010). "Early life:
Ancient acritarchs". Nature 463 (7283):
885–886. Bibcode 2010Natur.463..885B.
doi:10.1038/463885a. PMID
20164911 http://www.nature.com/nature/j
ournal/v463/n7283/full/463885a.html

18. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

19. ^ Harold Levin, "The Earth Through
Time", 8th ed., 2006, p257.
20. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

21. ^ Lezhava A, Kameoka D, Sugino H,
Goshi K, Shinkawa H, et al. 1997.
Chromosomal deletions in Streptomyces
griseus that remove the afsA locus.
Mol. Gen. Genet. 253:478-83
22. ^ Hedges, S Blair
et al. “A genomic timescale for the
origin of eukaryotes.” BMC
Evolutionary Biology 1.1 (2001): 4.
Print. http://www.biomedcentral.com/147
1-2148/1/4

23. ^ "Acritarch." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/acritarch
24. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p194.
25. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

26. ^ Knoll AH (1992) The early
evolution of eukaryotes: a
geological perspective. Science 256:
622-627
27. ^ Buick, R. . (2010). "Early life:
Ancient acritarchs". Nature 463 (7283):
885–886. Bibcode 2010Natur.463..885B.
doi:10.1038/463885a. PMID
20164911 http://www.nature.com/nature/j
ournal/v463/n7283/full/463885a.html

28. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

29. ^ Harold Levin, "The Earth Through
Time", 8th ed., 2006, p257.
30. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html

31. ^ Lezhava A, Kameoka D, Sugino H,
Goshi K, Shinkawa H, et al. 1997.
Chromosomal deletions in Streptomyces
griseus that remove the afsA locus.
Mol. Gen. Genet. 253:478-83
32. ^ Hedges, S Blair
et al. “A genomic timescale for the
origin of eukaryotes.” BMC
Evolutionary Biology 1.1 (2001): 4.
Print. http://www.biomedcentral.com/147
1-2148/1/4

33. ^ Javaux, Emmanuelle J., Craig P.
Marshall, and Andrey Bekker.
“Organic-walled microfossils in
3.2-billion-year-old shallow-marine
siliciclastic deposits.” Nature
463.7283 (2010):
934-938. http://www.nature.com/nature/j
ournal/v463/n7283/full/nature08793.html

34. ^ Javaux, Emmanuelle J., Craig P.
Marshall, and Andrey Bekker.
“Organic-walled microfossils in
3.2-billion-year-old shallow-marine
siliciclastic deposits.” Nature
463.7283 (2010):
934-938. http://www.nature.com/nature/j
ournal/v463/n7283/full/nature08793.html

{3.2 bybn}
35. ^ A. H. Knoll, E. J. Javaux,
D. Hewitt and P. Cohen, "Eukaryotic
Organisms in Proterozoic Oceans",
Philosophical Transactions: Biological
Sciences , Vol. 361, No. 1470, Major
Steps in Cell Evolution:
Palaeontological, Molecular and
Cellular Evidence of Their Timing and
Global Effects (Jun. 29, 2006), pp.
1023-1038 http://www.jstor.org/stable/2
0209698
{1.8 bybn}
36. ^
http://www.ucmp.berkeley.edu/protista/di
noflagfr.html
{1.8 bybn}
37. ^
http://www.ucl.ac.uk/GeolSci/micropal/ac
ritarch.html
{1900-1600 mybn}
38. ^ Harold
Levin, "The Earth Through Time", 8th
ed., 2006, p257. {1.6 bybn}

MORE INFO
[1] Javaux, Emmanuelle J., Knoll,
Andrew H., Walter, Malcolm,
"Recognizing and Interpreting the
Fossils of Early Eukaryotes", Origins
of Life and Evolution of Biospheres,
2003-02-01, Springer Netherlands,
Vol33, Iss1,
p75-94. http://dx.doi.org/10.1023/A:102
3992712071

[2] Jochen J. Brocks, Graham A. Logan,
Roger Buick, Roger E. Summons, "Archean
Molecular Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

[3] Cédric Berney and Jan Pawlowski,
"A Molecular Time-Scale for Eukaryote
Evolution Recalibrated with the
Continuous Microfossil Record",
Proceedings: Biological Sciences , Vol.
273, No. 1596 (Aug. 7, 2006), pp.
1867-1872 http://www.jstor.org/stable/2
5223537

[4] Javaux, Emmanuelle J., Andrew H.
Knoll, and Malcolm R. Walter.
“Morphological and ecological
complexity in early eukaryotic
ecosystems.” Nature 412.6842 (2001):
66-69. http://www.nature.com/nature/jou
rnal/v412/n6842/abs/412066a0.html

(Moodies Group) South Africa33  
[1] Figure from: Javaux, Emmanuelle
J., Craig P. Marshall, and Andrey
Bekker. “Organic-walled microfossils
in 3.2-billion-year-old shallow-marine
siliciclastic deposits.” Nature
463.7283 (2010):
934-938. http://www.nature.com/nature/j
ournal/v463/n7283/full/nature08793.html
COPYRIGHTED
source: http://www.nature.com/nature/jou
rnal/v463/n7283/full/nature08793.html


[2] Figure from: Javaux, Emmanuelle
J., Andrew H. Knoll, and Malcolm R.
Walter. “Morphological and ecological
complexity in early eukaryotic
ecosystems.” Nature 412.6842 (2001):
66-69. http://www.nature.com/nature/jou
rnal/v412/n6842/abs/412066a0.html Figur
e 1 Protistan microfossils from the
Roper Group. a, c, Tappania plana,
showing asymmetrically distributed
processes and bulbous protrusions
(arrow in a). b, detail of a, showing
dichotomously branching process. d,
Valeria lophostriata. e, Dictyosphaera
sp. f, Satka favosa. The scale bar in a
is 35 µm for a and c; 10 µm for b;
100 µm for d; 15 µm for e; and 40 µm
for f.
source: http://www.nature.com/nature/jou
rnal/v412/n6842/abs/412066a0.html

2,923,000,000 YBN
20
178) Eubacteria Phylum Firmicutes
evolves (low G+C {Guanine and Cytosine
count} Gram positive bacteria:
botulism, tetanus, anthrax).17 18 19
FO
OTNOTES
1. ^
http://www.howjsay.com/index.php?word=fi
rmicutes&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ Nature v417 n6886 (not
TOL)
4. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
5. ^ C.Michael Hogan. 2010.
Bacteria. Encyclopedia of Earth. eds.
Sidney Draggan and C.J.Cleveland,
National Council for Science and the
Environment, Washington
DC http://www.eoearth.org/article/Bacte
ria?topic=49480

6. ^
http://www.howjsay.com/index.php?word=fi
rmicutes&submit=Submit

7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ Nature v417 n6886 (not
TOL)
9. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
10. ^
http://www.howjsay.com/index.php?word=fi
rmicutes&submit=Submit

11. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
12. ^ Nature v417 n6886 (not
TOL)
13. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
14. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
15. ^ Nature v417
n6886 (not TOL)
16. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
17. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
18. ^ Nature v417 n6886 (not
TOL)
19. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
20. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).

MORE INFO
[1]
http://en.wikipedia.org/wiki/Peptidoglyc
an

[2] firmicutes only bacteria to make
endospores
http://en.wikipedia.org/wiki/Endospore
[3]
http://en.wikipedia.org/wiki/Firmicutes
[4]
http://www.earthlife.net/prokaryotes/fir
micutes.html

 
[1] Listeria monocytogenes is a
Gram-positive bacterium, in the
division Firmicutes, named for Joseph
Lister. It is motile by means of
flagella. Some studies suggest that 1
to 10% of humans may carry L.
monocytogenes in their
intestines. Researchers have found L.
monocytogenes in at least 37 mammalian
species, both domesticated and feral,
as well as in at least 17 species of
birds and possibly in some species of
fish and shellfish. Laboratories can
isolate L. monocytogenes from soil,
silage, and other environmental
sources. L. monocytogenes is quite
hardy and resists the deleterious
effects of freezing, drying, and heat
remarkably well for a bacterium that
does not form spores. Most L.
monocytogenes are pathogenic to some
degree.
source: http://en.wikipedia.org/wiki/Ima
ge:Listeria.jpg


[2] These are bacteria (about 0.3 µm
in diameter) that do not have outer
walls, only cytoplasmic membranes.
However, they do have cytoskeletal
elements that give them a distinct
non-spherical shape. They look like
schmoos that are pulled along by their
heads. How they are able to glide is a
mystery.
source: http://webmac.rowland.org/labs/b
acteria/projects_glide.html

2,920,000,000 YBN
7
288) First endospores. The ability to
form endospores evolve in some
firmicutes. An endospore is a tough
reduced dry form of a bacterium
triggered by a lack of nutrients that
protects the bacterium, and allows it
to be revived after long periods of
time.5 Some 25 million year old spores
have been revived.6
FOOTNOTES
1. ^ C.Michael Hogan. 2010. Bacteria.
Encyclopedia of Earth. eds. Sidney
Draggan and C.J. Cleveland, National
Council for Science and the
Environment, Washington DC
http://www.eoearth.org/article/Bacteri
a?topic=49480

2. ^ C.Michael Hogan. 2010. Bacteria.
Encyclopedia of Earth. eds. Sidney
Draggan and C.J. Cleveland, National
Council for Science and the
Environment, Washington DC
http://www.eoearth.org/article/Bacteri
a?topic=49480

3. ^ C.Michael Hogan. 2010. Bacteria.
Encyclopedia of Earth. eds. Sidney
Draggan and C.J. Cleveland, National
Council for Science and the
Environment, Washington DC
http://www.eoearth.org/article/Bacteri
a?topic=49480

4. ^ Cano RJ, Borucki MK (1995) Revival
and identification of bacterial spores
in 25- to 40-million-year-old Dominican
amber. Science 268: 1060-1064.
doi:10.1126/science.7538699 http://dx.d
oi.org/10.1126%2Fscience.7538699

5. ^ C.Michael Hogan. 2010. Bacteria.
Encyclopedia of Earth. eds. Sidney
Draggan and C.J. Cleveland, National
Council for Science and the
Environment, Washington DC
http://www.eoearth.org/article/Bacteri
a?topic=49480

6. ^ Cano RJ, Borucki MK (1995) Revival
and identification of bacterial spores
in 25- to 40-million-year-old Dominican
amber. Science 268: 1060-1064.
doi:10.1126/science.7538699 http://dx.d
oi.org/10.1126%2Fscience.7538699

7. ^ Ted Huntington, a total guess my
friends

MORE INFO
[1] "Endospore". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Endospore
 
[1] Spore forming inside a bacterium.
Stahly, MicrobeLibrary COPYRIGHTED
source: http://www.microbe.org/microbes/
spores.asp


[2] Listeria monocytogenes is a
Gram-positive bacterium, in the
division Firmicutes, named for Joseph
Lister. It is motile by means of
flagella. Some studies suggest that 1
to 10% of humans may carry L.
monocytogenes in their
intestines. Researchers have found L.
monocytogenes in at least 37 mammalian
species, both domesticated and feral,
as well as in at least 17 species of
birds and possibly in some species of
fish and shellfish. Laboratories can
isolate L. monocytogenes from soil,
silage, and other environmental
sources. L. monocytogenes is quite
hardy and resists the deleterious
effects of freezing, drying, and heat
remarkably well for a bacterium that
does not form spores. Most L.
monocytogenes are pathogenic to some
degree.
source: http://en.wikipedia.org/wiki/Ima
ge:Listeria.jpg

2,800,000,000 YBN
1
76)
FOOTNOTES
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1] multicellularity.
http://www.mansfield.ohio-state.edu/~sab
edon/biol3018.htm
multicellularity.
Multicellularity.pdf
http://en.wikipedia.org/wiki/Escherichia
_coli
http://en.wikipedia.org/wiki/Proteobacte
ria
[2] JOSHUA LEDERBERG, E. L. TATUM,
"Gene Recombination in Escherichia
Coli", Nature 158, 558-558 (19 October
1946) doi:10.1038/158558a0 Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html

[3] "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>
[4] conjugation in protists, flagella
in eukaryotes: Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989)
[5] prokaryote
pili and archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

[6] Stackebrandt et al. Proteobacteria
classis nov., a name for the
phylogenetic taxon that includes the
"purple bacteria and their relatives".
Int. J. Syst. Bacteriol., 1988, 38,
321–325. http://ijs.sgmjournals.org/c
ontent/38/3/321.full.pdf

 
[1] Figure 1. Transmission electron
micrograph of the ELB agent in XTC-2
cells. The rickettsia are free in the
cytoplasm and surrounded by an electron
transparent halo. Original
magnification X 30,000. CDC PD
source: www.cdc.gov/ncidod/
eid/vol7no1/raoultG1.htm


[2] Caulobacter crescentus. From
http://sunflower.bio.indiana.edu/~ybrun/
L305.html COPYRIGHTED EDU was in wiki
but appears to be removed
source: http://upload.wikimedia.org/wiki
pedia/en/4/42/Caulobacter.jpg

2,800,000,000 YBN
55
177) Gender and sex (conjugation)
evolve in Escherichia Coli {esRriKEo
KOlE43 44 } bacteria. Conjugation is
the exchange of DNA (plasmids) by a
donor {male} bacterium through a pilus
to a recipient {female} bacterium.45 46
47 48 49 50 This may be the process
that evolves into eukaryote sexual
reproduction.51

In addition to pili and conjugation,
proteins that can cut DNA and other
proteins that can connect two strands
of DNA together evolve.52

Some protists (cilliates and some
algae) reproduce sexually by
conjugation.53
So perhaps conjugation
is related to the transition from a
single circle of DNA to multiple linear
chromosomes in eukaryotes. If
conjugation in eukaryotes descends
directly from a proteobacteria then
perhaps the ancestor of all eukaryotes,
or certainly those that can conjugate
was a proteobacteria.54
FOOTNOTES
1. ^ JOSHUA LEDERBERG, E. L. TATUM,
"Gene Recombination in Escherichia
Coli", Nature 158, 558-558 (19 October
1946) doi:10.1038/158558a0 Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
2. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
3. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
4. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
5. ^ Tree of life,
http://tolweb.org/tree/
6. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
7. ^ JOSHUA LEDERBERG, E.
L. TATUM, "Gene Recombination in
Escherichia Coli", Nature 158, 558-558
(19 October 1946) doi:10.1038/158558a0
Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
8. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
9. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
10. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
11. ^ Tree of life,
http://tolweb.org/tree/
12. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
13. ^
http://howjsay.com/index.php?word=escher
ichia+coli&submit=Submit

14. ^ "Escherichia." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 03 Jun. 2012.
http://www.answers.com/topic/escherichia

15. ^ JOSHUA LEDERBERG, E. L. TATUM,
"Gene Recombination in Escherichia
Coli", Nature 158, 558-558 (19 October
1946) doi:10.1038/158558a0 Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
16. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
17. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
18. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
19. ^ Tree of life,
http://tolweb.org/tree/
20. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
21. ^ prokaryote pili and
archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

22. ^
http://howjsay.com/index.php?word=escher
ichia+coli&submit=Submit

23. ^ "Escherichia." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 03 Jun. 2012.
http://www.answers.com/topic/escherichia

24. ^ JOSHUA LEDERBERG, E. L. TATUM,
"Gene Recombination in Escherichia
Coli", Nature 158, 558-558 (19 October
1946) doi:10.1038/158558a0 Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
25. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
26. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
27. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
28. ^ Tree of life,
http://tolweb.org/tree/
29. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
30. ^ prokaryote pili and
archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

31. ^
http://howjsay.com/index.php?word=escher
ichia+coli&submit=Submit

32. ^ "Escherichia." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 03 Jun. 2012.
http://www.answers.com/topic/escherichia

33. ^ JOSHUA LEDERBERG, E. L. TATUM,
"Gene Recombination in Escherichia
Coli", Nature 158, 558-558 (19 October
1946) doi:10.1038/158558a0 Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
34. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
35. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
36. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
37. ^ Tree of life,
http://tolweb.org/tree/
38. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
39. ^ Ted Huntington.
40. ^ prokaryote
pili and archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

41. ^ conjugation in protists, flagella
in eukaryotes: Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).
42. ^ Ted
Huntington.
43. ^
http://howjsay.com/index.php?word=escher
ichia+coli&submit=Submit

44. ^ "Escherichia." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 03 Jun. 2012.
http://www.answers.com/topic/escherichia

45. ^ JOSHUA LEDERBERG, E. L. TATUM,
"Gene Recombination in Escherichia
Coli", Nature 158, 558-558 (19 October
1946) doi:10.1038/158558a0 Letter
http://www.nature.com/nature/journal/v
158/n4016/abs/158558a0.html
{Lederberg_
Joshua_19460917.pdf}
46. ^ "conjugation." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica, 2011.
Web. 01 May. 2011.
<http://www.britannica.com/EBchecked/topi
c/132820/conjugation
>.
47. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
48. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
49. ^ Tree of life,
http://tolweb.org/tree/
50. ^ David moreira, Purificacion
Lopez-Garcia, "Symbiosis Between
methanogenic Archaea and
delta-Proteobacteria as the Origin of
Eukaryotes: The Synthreophic
Hypothesis", J Mol Evol (1998)
47:517-530. eukorig6_jmol.pdf
51. ^ Ted Huntington.
52. ^ prokaryote
pili and archaea flagella related:
http://www.queens-pfd.ca/people/index.cf
m?meds=profile&profile=12

53. ^ conjugation in protists, flagella
in eukaryotes: Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).
54. ^ Ted
Huntington.
55. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004). {2800000000 YBN}
 
[1] the fertility factor or F factor is
a very large (94,500 bp) circular dsDNA
plasmid; it is generally independent of
the host chromosome. COPYRIGHTED
source: http://www.mun.ca/biochem/course
s/3107/images/Fplasmidmap.gif


[2] conjugation (via pilus)
COPYRIGHTED EDU
source: http://www.bio.miami.edu/dana/16
0/conjugation.jpg

2,784,000,000 YBN
9
176)
FOOTNOTES
1. ^
http://howjsay.com/index.php?word=planct
omycetes&submit=Submit

2. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
3. ^
http://howjsay.com/index.php?word=planct
omycetes&submit=Submit

4. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
5. ^
http://howjsay.com/index.php?word=planct
omycetes&submit=Submit

6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
7. ^
http://howjsay.com/index.php?word=planct
omycetes&submit=Submit

8. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
9. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).

MORE INFO
[1] s10
http://ijs.sgmjournals.org/cgi/reprint/5
0/6/1965

[2]
http://genomebiology.com/2002/3/6/resear
ch/0031

[3]
http://en.wikipedia.org/wiki/Planctomyce
tes

 
[1] Electron micrographs of cells of
new Gemmata-like and Isosphaera-like
isolates. (A) Negatively stained cell
of the Gemmata-like strain JW11-2f5
showing crateriform structures
(arrowhead) and coccoid cell
morphology. Bar marker, 200 nm. (B)
Negatively stained budding cell of
Isosphaera-like strain CJuql1 showing
uniform crateriform structures
(arrowhead) on the mother cell and
coccoid cell morphology. Bar marker,
200 nm. (C) Thin section of
Gemmata-like cryosubstituted cell of
strain JW3-8s0 showing the
double-membrane-bounded nuclear body
(NB) and nucleoid (N) enclosed within
it. Bar marker, 200 nm. (D) Thin
section of Isosphaera-like strain C2-3
possessing a fibrillar nucleoid (N)
within a cytoplasmic compartment
bounded by a single membrane (M) only.
Bar marker, 200 nm. Appl Environ
Microbiol. 2002 January; 68(1):
417-422. doi:
10.1128/AEM.68.1.417-422.2002.
source: http://www.pubmedcentral.gov/art
iclerender.fcgi?tool=pubmed&pubmedid=117
72655


[2] Evolutionary distance tree derived
from comparative analysis of 16S rDNAs
from freshwater and soil isolates and
reference strains of the order
Planctomycetales. Database accession
numbers are shown in parentheses after
species, strain, or clone names.
Bootstrap values of greater than 70%
from 100 bootstrap resamplings from the
distance analysis are presented at
nodes. Thermotoga maritima was used as
an outgroup. Isolates from this study
and representative named species of the
planctomycetes are indicated in bold.
The scale bar represents 0.1 nucleotide
substitution per nucleotide
position. Appl Environ Microbiol.
2002 January; 68(1): 417-422. doi:
10.1128/AEM.68.1.417-422.2002.
source: http://florey.biosci.uq.edu.au/m
ypa/images/fuerst2.gif

2,784,000,000 YBN
1
179) The Phylum Actinobacteria have 5
Orders:
ORDER Acidimicrobiales
ORDER Actinobacteriales
ORDER Coriobacteriales
ORDER
Rubrobacteriales
ORDER Sphaerobacteriales
FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=ac
tinobacteria&submit=Submit


MORE INFO
[1] "streptomyces." Britannica
Concise Encyclopedia. Encyclopædia
Britannica, Inc., 1994-2010.
Answers.com 04 Sep. 2011.
http://www.answers.com/topic/streptomyce
s

 
[1] Aerial mycelium and spore of
Streptomyces coelicolor. The mycelium
and the oval spores are about 1µm
wide, typical for bacteria and much
smaller than fungal hyphae and spores.
(Scanning electron micrograph, Mark
Buttner, Kim Findlay, John Innes
Centre). COPYRIGHT UK
source: http://www.sanger.ac.uk/Projects
/S_coelicolor/micro_image4.shtml


[2] Frankia is a genus of
nitrogen-fixing soil bacteria, which
possesses a set of features that are
unique amongst symbiotic
nitrogen-fixing microorganisms,
including rhizobia, making it an
attractive taxon to study. These
heterotrophic Gram-positive bacteria
which are able to induce symbiotic
nitrogen-fixing root nodules
(actinorhizas) in a wide range of
dicotyledonous species (actinorhizal
plants), have also the capacity to fix
atmospheric nitrogen in culture and
under aerobic conditions.
source: http://www.ibmc.up.pt/webpagesgr
upos/cam/Frankia.htm

2,775,000,000 YBN
9
174) Genetic comparison shows the
Eubacteria Phylum, Spirochaetes
(Syphilis, Lyme disease) evolving now.8


The spirochaetes (or spirochetes) are a
phylum of distinctive bacteria, which
have long, helically coiled cells. They
are distinguished by the presence of
flagella running lengthwise between the
cell membrane and cell wall, called
axial filaments. These cause a twisting
motion which allows the spirochaete to
move around. Most spirochaetes are
free-living and anaerobic, but there
are numerous exceptions.

Spirochaetes only have one order:
ORDER
Spirochaetales
and 3 families.
FOOTNOTES
1. ^
www.d.umn.edu/~rhicks1/diversity/Pronunc
iation%20Guide.pdf
2. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
3. ^
www.d.umn.edu/~rhicks1/diversity/Pronunc
iation%20Guide.pdf
4. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
5. ^
www.d.umn.edu/~rhicks1/diversity/Pronunc
iation%20Guide.pdf
6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
7. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
8. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
9. ^ estimated from
Battistuzzi, Feijao, Hedges, "A Genomic
timescale of prokaryote evolution:
insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
 
[1] Syphilis is a complex, sexually
transmitted disease (STD) with a highly
variable clinical course. The disease
is caused by the bacterium, Treponema
pallidum. In the United States, 32,871
cases of syphilis, including 432 cases
of congenital syphilis, were detected
by public health officials in 2002.
Eight of the ten states with the
highest rates of syphilis are located
in the southern region of the United
States.
source: http://www.cdc.gov/nchstp/od/tus
kegee/syphilis.htm


[2] unknown
source: http://uhavax.hartford.edu/bugl/
images/Treponema%20pallidum.jpg

2,775,000,000 YBN
13 14
175)
FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=ba
cteroidetes+&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
4. ^
http://www.howjsay.com/index.php?word=ba
cteroidetes+&submit=Submit

5. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
6. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
7. ^
http://www.howjsay.com/index.php?word=ba
cteroidetes+&submit=Submit

8. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
9. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
10. ^
http://www.howjsay.com/index.php?word=ba
cteroidetes+&submit=Submit

11. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
12. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
13. ^ estimate from Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
14. ^ estimate from Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).

MORE INFO
[1] Tree of Life
[2]
http://en.wikipedia.org/wiki/Bacteroidet
es

[3]
http://en.wikipedia.org/wiki/Chlorobi
 
[1] Bacteroides fragilis . From the
Zdravotni University
source: http://biology.kenyon.edu/Microb
ial_Biorealm/bacteria/bacteroidete_chlor
ob_group/bacteroides/bacteroides.htm


[2] Cross section of a Bacteroides
showing an outer membrane, a
peptidoglycan layer, and a cytoplasmic
membrane. From New-asthma
source: http://phil.cdc.gov/phil/details
.asp

2,775,000,000 YBN
1
217) Chlamydiae have a life-cycle
involving two distinct forms. Infection
takes place by means of elementary
bodies (EB), which are metabolically
inactive. These are taken up within a
cellular vacuole, where they grow into
larger reticulate bodies (RB), which
reproduce. Ultimately new elementary
bodies are produced and expelled from
the cell.

Verrucomicrobia is a recently described
phylum of bacteria. This phylum
contains only a few described species
(Verrucomicrobia spinosum, is an
example, the phylum is named after
this). The species identified have been
isolated from fresh water and soil
environments and human feces. A number
of as-yet uncultivated species have
been identified in association with
eukaryotic hosts including extrusive
explosive ectosymbionts of protists and
endosymbionts of nematodes residing in
their gametes.

Evidence suggests that verrucomicrobia
are abundant within the environment,
and important (especially to soil
cultures). This phylum is considered to
have two sister phyla Chlamydiae and
Lentisphaera.

There are three main species of
chlamydiae that infect humans:

* Chlamydia trachomatis, which
causes the eye-disease trachoma and the
sexually transmitted infection
chlamydia;
* Chlamydophila pneumoniae, which
causes a form of pneumonia;
* Chlamydophila
psittaci, which causes psittacosis.


CLASS Chlamydiae
ORDER Chlamydiales

PHYLA Verrucomicrobia
ORDER Verrucomicrobiales
FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=ch
lamydiae&submit=Submit


MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
[3]
http://en.wikipedia.org/wiki/Chlamydiae
[4]
http://en.wikipedia.org/wiki/Verrucomicr
obia

 
[1] Chlamydia trachomatis wiki, is
copyrighted
source: http://en.wikipedia.org/wiki/Chl
amydia_trachomatis


[2] wiki, public domain
source: http://en.wikipedia.org/wiki/Ima
ge:Chlamydophila_pneumoniae.jpg

2,775,000,000 YBN
9 10
6309)
FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
3. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
4. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
5. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
6. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
7. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
8. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).. ^
9. ^ estimate from Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
10. ^ estimate from Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).

MORE INFO
[1] Tree of Life
[2]
http://en.wikipedia.org/wiki/Bacteroidet
es

[3]
http://en.wikipedia.org/wiki/Chlorobi
 
[1] Description Deutsch: Grüne
Schwefelbakterien (Chlorobiaceae) im
unteren Bereich einer
Winogradsky-Säule Date
20.03.2007 (20 March 2007
(original upload date)) Source
Transferred from de.wikipedia;
transfer was stated to be made by
User:Jacopo Werther. (Original text :
Mikrobiologie Praktikum Universität
Kassel März 2007) Author
kOchstudiO. Original uploader was
KOchstudiO at
de.wikipedia Permission (Reusing this
file) Released into the public
domain (by the author). (Original text
: uneingeschränkte Nutzung) PD
source: http://upload.wikimedia.org/wiki
pedia/commons/e/e7/Green_d_winogradsky.j
pg

2,775,000,000 YBN
1
6310) Verrucomicrobia is a recently
described phylum of bacteria. This
phylum contains only a few described
species (Verrucomicrobia spinosum, is
an example, the phylum is named after
this). The species identified have been
isolated from fresh water and soil
environments and human feces. A number
of as-yet uncultivated species have
been identified in association with
eukaryotic hosts including extrusive
explosive ectosymbionts of protists and
endosymbionts of nematodes residing in
their gametes.

Evidence suggests that verrucomicrobia
are abundant within the environment,
and important (especially to soil
cultures). This phylum is considered to
have two sister phyla Chlamydiae and
Lentisphaera.

There are three main species of
chlamydiae that infect humans:

* Chlamydia trachomatis, which
causes the eye-disease trachoma and the
sexually transmitted infection
chlamydia;
* Chlamydophila pneumoniae, which
causes a form of pneumonia;
* Chlamydophila
psittaci, which causes psittacosis.


CLASS Chlamydiae
ORDER Chlamydiales

PHYLA Verrucomicrobia
ORDER Verrucomicrobiales
FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=ve
rrucomicrobia&submit=Submit


MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
[3]
http://en.wikipedia.org/wiki/Chlamydiae
[4]
http://en.wikipedia.org/wiki/Verrucomicr
obia

 
[1] Figure 1 Transmission electron
micrographs of high-pressure frozen and
cryosubstituted Verrucomicrobium
spinosum. A. Cell prepared by
high-pressure freezing and
cryosubstitution showing prostheca
(PT), paryphoplasm (P), and an
intracytoplasmic membrane (ICM)
enclosing a pirellulosome region
containing a condensed fibrillar
nucleoid (N). Inset: enlarged view of
area of cell outlined in the white box
showing cytoplasmic membrane (CM),
paryphoplasm and ICM. B.
freeze-fracture replica of cell showing
cross-fractured paryphoplasm (P) and
fracture faces of ICM and CM. Bar –
500 nm Lee et al. BMC Microbiology
2009 9:5
doi:10.1186/1471-2180-9-5 COPYRIGHTED
source: http://www.biomedcentral.com/con
tent/figures/1471-2180-9-5-1-l.jpg


[2] Figure 2 Transmission electron
micrograph of high-pressure frozen and
cryosubstituted Verrucomicrobium
spinosum. Cell prepared by
high-pressure freezing and
cryosubstitution showing prostheca
(PT), ribosome-free paryphoplasm (P),
and an intracytoplasmic membrane (ICM)
enclosing a pirellulosome region
containing a condensed fibrillar
nucleoid (N). Membrane-bounded
vesicle-like compartments within some
prosthecae extensions are also present
(see arrowheads). Bar – 1 μm Lee
et al. BMC Microbiology 2009 9:5
doi:10.1186/1471-2180-9-5 COPYRIGHTED
source: http://www.biomedcentral.com/con
tent/figures/1471-2180-9-5-2-l.jpg

2,740,000,000 YBN
216)
FOOTNOTES
1. ^ Ted Huntington.
  
2,730,000,000 YBN
5 6
80)
FOOTNOTES
1. ^ "endocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/endocytosis

2. ^ "exocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/exocytosis
3. ^ "endocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/endocytosis

4. ^ "exocytosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 07
Mar. 2012.
http://www.answers.com/topic/exocytosis
5. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 +30mybn guess
and }
6. ^ guess based on Cavalier-Smith
stating that endocytosis occurs before
a cytoskeleton {Nucleus 2700 +30mybn
guess and}
 
[1] Endocytosis and Exocytosis: For
example, this electron micrograph is
showing the process of exocytosis . The
process begins by fusion of the
membranes at the peripheral pole of the
granule. Then an opening is created
which widens to look like an omicron
figure. This opening allows the
granular material to be released. The
membrane is now part of the plasma
membrane and any proteins carried with
it can be incorporated into the plasma
membrane. Note that there is no coating
on the membrane. This figure was taken
from Alberts et al, Molecular Biology
of the Cell, Garland Publishing Third
Edition, 1994 In contrast, this
micrograph shows a figure which looks
something like an omicron, however,
this view is showing receptor mediated
endocytosis of virus particles. In both
cases, the membrane is coated with
clathrin and these represent classical
receptor mediated endocytosis profiles.
Most ligands cannot be visualized by
themselves, like a virus particle.
Therefore, the cytochemist must attach
label to the ligand. Alternatively, the
cytochemist could immunocytochemically
detect the receptor with antibodies
that recognize the extracellular
domain. This figure was taken from
Endocytosis, Edited by Ira Pastan and
Mark C. Willingham, Plenum Press, N.Y.,
1985 COPYRIGHTED
source: http://www.cytochemistry.net/cel
l-biology/end7.jpg


[2] Pinocytosis In the process of
pinocytosis the plasma membrane froms
an invagination. What ever substance
is found within the area of
invagination is brought into the
cell. In general this material will
be dissolved in water and thus this
process is also refered to as
''cellular drinking'' to indicate that
liquids and material dissolved in
liquids are ingested by the
cell. This is opposed to the
ingestion of large particulate material
like bacteria or other cells or cell
debris.
source: http://academic.brooklyn.cuny.ed
u/biology/bio4fv/page/endocytb.htm

2,706,000,000 YBN
299)
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
  
2,700,000,000 YBN
55
60) Eukaryotic cell. The first cell
with a nucleus. The first protist. The
nucleus may develop from the infolding
of plasma membrane.32

The word "Eukaryote" is from the Greek
"eu" which means "true" and "karyon"
which means "kernel", in this case
refering to the nucleus.33

All cells have several basic features
in common: They are all bounded by a
selective barrier, called the plasma
membrane. Enclosed by the membrane is a
semifluid, jellylike substance called
cytosol, in which organelles and other
components are found. All cells contain
chromosomes, which carry genes in the
form of DNA. And all cells have
ribosomes, tiny bodies that make
proteins according to instructions from
the genes.34

There are some difference between
prokaryotic and eukaryotic cells:
In
prokaryotic cells the DNA is
concentrated in a region that is not
membrane enclosed called the "nucleoid"
while in eukaryotic cells most of the
DNA is contained in a nucleus that is
bounded by a double membrane.
Eukaryotic cells are generally much
larger than prokaryotic cells. Typical
bacteria are between 1-5 um in
diameter, while eukaryotic cells are
typically 10-100 um in diameter.35
Unlike prokaryotic cells, eukaryotic
cells have a cytoskeleton. The
cytoskeleton enables eukaryotic cells
to change their shape and to surround
and engulf other cells. Eukaryotic
cells also have internal structures
that prokaryotic cells lack such as
mitochondria and plastids.36 DNA in
prokaryotic cells is usually in the
form of a single cicular chromosome
(sometimes with additional small
circles of DNA known as plasmids),
while DNA in the nucleus of eukaryotes
contains linear chromosomes (some
organelles in eukaryotes also contain
DNA, most mitochondrial and chloroplast
DNA is also circular reflecting their
prokaryote origin).37

All protists, fungi, animals and plant
cells descend from this common
eukaryotic cell ancestor.38

Like prokaryotes, this first eukaryote
cell is probably haploid, having only a
single unique DNA. Most later
eukaryotes will be diploid, having two
sets of DNA.39 40 41 42


Other alternative theories are that the
nucleus may be a captured bacterium,
virus, or plasmid.43 44 45 46 47 48 49
50 51 52 53

That a eukaryote cell survived the
journey from a different star or galaxy
cannot be ruled out.54
FOOTNOTES
1. ^ Campbell, Reece, et al,
"Biology", 2008, p516-517.
2. ^ Campbell, Reece,
et al, "Biology", 2008, p516-517.
3. ^ Campbell,
Reece, et al, "Biology", 2008,
p516-517.
4. ^ Campbell, Reece, et al, "Biology",
2008, p98.
5. ^ Campbell, Reece, et al,
"Biology", 2008, p516-517.
6. ^ Jill Saffrey,
"Biology: uniformity & diversity. Core
of life, Book 3, Volume 2", 2001,
p353. http://books.google.com/books?id=
43yiLI1DvwAC&pg=PA353

7. ^ Montgomery Slatkin, "Exploring
evolutionary biology: readings from
American scientist", 1995,
p161. http://books.google.com/books?ei=
AAVdT77TFMiiiQKB8a24Cw

8. ^ Andrew Wallace Hayes, "Principles
and methods of toxicology", 2007,
p1181. http://books.google.com/books?id
=vgHXTId8rnYC&pg=PA1181

9. ^ N. A. Kolchanov, Hwa A. Lim,
"Computer analysis of genetic
macromolecules: structure, function,
and evolution", 1994,
p2. http://books.google.com/books?id=cr
ip5tRcF0YC&pg=PA2

10. ^ "diploid", Oxford Dictionary of
Biochemistry http://www.answers.com/top
ic/diploid

11. ^ Campbell, Reece, et al,
"Biology", 2008, p98.
12. ^ Campbell, Reece,
et al, "Biology", 2008, p516-517.
13. ^ Campbell,
Reece, et al, "Biology", 2008, p98.
14. ^
Campbell, Reece, et al, "Biology",
2008, p98.
15. ^ Campbell, Reece, et al,
"Biology", 2008, p516-517.
16. ^ Jill Saffrey,
"Biology: uniformity & diversity. Core
of life, Book 3, Volume 2", 2001,
p353. http://books.google.com/books?id=
43yiLI1DvwAC&pg=PA353

17. ^ Montgomery Slatkin, "Exploring
evolutionary biology: readings from
American scientist", 1995,
p161. http://books.google.com/books?ei=
AAVdT77TFMiiiQKB8a24Cw

18. ^ Andrew Wallace Hayes, "Principles
and methods of toxicology", 2007,
p1181. http://books.google.com/books?id
=vgHXTId8rnYC&pg=PA1181

19. ^ N. A. Kolchanov, Hwa A. Lim,
"Computer analysis of genetic
macromolecules: structure, function,
and evolution", 1994,
p2. http://books.google.com/books?id=cr
ip5tRcF0YC&pg=PA2

20. ^ "diploid", Oxford Dictionary of
Biochemistry http://www.answers.com/top
ic/diploid

21. ^ Campbell, Reece, et al,
"Biology", 2008, p98.
22. ^ Campbell, Reece,
et al, "Biology", 2008, p516-517.
23. ^ Campbell,
Reece, et al, "Biology", 2008, p98.
24. ^
Campbell, Reece, et al, "Biology",
2008, p98.
25. ^ Campbell, Reece, et al,
"Biology", 2008, p516-517.
26. ^ Jill Saffrey,
"Biology: uniformity & diversity. Core
of life, Book 3, Volume 2", 2001,
p353. http://books.google.com/books?id=
43yiLI1DvwAC&pg=PA353

27. ^ Montgomery Slatkin, "Exploring
evolutionary biology: readings from
American scientist", 1995,
p161. http://books.google.com/books?ei=
AAVdT77TFMiiiQKB8a24Cw

28. ^ Andrew Wallace Hayes, "Principles
and methods of toxicology", 2007,
p1181. http://books.google.com/books?id
=vgHXTId8rnYC&pg=PA1181

29. ^ N. A. Kolchanov, Hwa A. Lim,
"Computer analysis of genetic
macromolecules: structure, function,
and evolution", 1994,
p2. http://books.google.com/books?id=cr
ip5tRcF0YC&pg=PA2

30. ^ "diploid", Oxford Dictionary of
Biochemistry http://www.answers.com/top
ic/diploid

31. ^ Campbell, Reece, et al,
"Biology", 2008, p98.
32. ^ Campbell, Reece,
et al, "Biology", 2008, p516-517.
33. ^ Campbell,
Reece, et al, "Biology", 2008, p98.
34. ^
Campbell, Reece, et al, "Biology",
2008, p98.
35. ^ Campbell, Reece, et al,
"Biology", 2008, p98.
36. ^ Campbell, Reece,
et al, "Biology", 2008, p516-517.
37. ^ Jill
Saffrey, "Biology: uniformity &
diversity. Core of life, Book 3, Volume
2", 2001,
p353. http://books.google.com/books?id=
43yiLI1DvwAC&pg=PA353

38. ^ Campbell, Reece, et al,
"Biology", 2008, p98.
39. ^ Montgomery
Slatkin, "Exploring evolutionary
biology: readings from American
scientist", 1995,
p161. http://books.google.com/books?ei=
AAVdT77TFMiiiQKB8a24Cw

40. ^ Andrew Wallace Hayes, "Principles
and methods of toxicology", 2007,
p1181. http://books.google.com/books?id
=vgHXTId8rnYC&pg=PA1181

41. ^ N. A. Kolchanov, Hwa A. Lim,
"Computer analysis of genetic
macromolecules: structure, function,
and evolution", 1994,
p2. http://books.google.com/books?id=cr
ip5tRcF0YC&pg=PA2

42. ^ "diploid", Oxford Dictionary of
Biochemistry http://www.answers.com/top
ic/diploid

43. ^ Nature 396, 109 - 110 (12
November 1998);
doi:10.1038/24030 Rickettsia, typhus
and the mitochondrial
connection MICHAEL W. GRAY
44. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
45. ^ Nature 392, 15 - 16
(05 March 1998); doi:10.1038/32033 A
paradigm gets shifty W. FORD
DOOLITTLE
46. ^ (h2 symbiosis) The chimeric
eukaryote: Origin of the nucleus from
the karyomastigont in amitochondriate
protists Lynn Margulis*, Michael F.
Dolan* , and Ricardo
Guerrero file:/root/web/euk_nucleo6954.
pdf
47. ^ "Planctomycetes a phylum of
emerging interest for microbial
evolution and ecology John A.
Fuerst" planctomycetes_a1.pdf and
fuerst1.pdf
48. ^ Nature 392, 37 - 41 (05 March
1998); doi:10.1038/32096 The hydrogen
hypothesis for the first
eukaryote WILLIAM MARTIN* AND MIKLÓS
MÜLLER†
49. ^ Nature 431, 152 - 155 (09
September 2004);
doi:10.1038/nature02848 The ring of
life provides evidence for a genome
fusion origin of eukaryotes MARIA C.
RIVERA1,3,4 AND JAMES A. LAKE1,2,4
50. ^ Science,
Vol 305, Issue 5685, 766-768 , 6 August
2004 EVOLUTIONARY BIOLOGY: The Birth
of the Nucleus Elizabeth Pennisi
51. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).0) origin of nuclear
membrane/envelope, is anaerobic
eukorig1 thru eukorig7
52. ^ S Blair Hedges,
Hsiong Chen, Sudhir Kumar, Daniel YC
Wang, Amanda S Thompson and Hidemi Wa,
"A genomic timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4, (2001).
53. ^ S
Blair Hedges, Hsiong Chen, Sudhir
Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{split of archae and
eukaryote at c4.0 bybn, but eukaryote
{with nucleus?} at) 2.7 bybn}
54. ^ Ted
Huntington.
55. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{split of archae and
eukaryote at c4.0 bybn, but eukaryote
{with nucleus?} at) 2.7 bybn}

MORE INFO
[1] Harold Levin, "The Earth
Through Time", 8th ed., 2006, p256
[2]
Jochen J. Brocks, Graham A. Logan,
Roger Buick, Roger E. Summons, "Archean
Molecular Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

[3] Alexey S. Kondrashov, "EVOLUTIONARY
GENETICS OF LIFE CYCLES", Annual Review
of Ecology and Systematics Vol. 28:
391-435 (Volume publication date
November 1997)
http://arjournals.annualreviews.org/do
i/full/10.1146/annurev.ecolsys.28.1.391;
jsessionid=npo4ogeI2anbnHbeKO

 
[1] Campbell, Reece, et al,
''Biology'', 2008, p517. COPYRIGHTED
source: Campbell, Reece, et al,
"Biology", 2008, p517.


[2]
http://www.regx.de/m_organisms.php#planc
to
source: http://www.regx.de/m_organisms.p
hp#plancto

2,700,000,000 YBN
62)
FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

3. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
4. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

5. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
6. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

7. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
8. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

9. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
10. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

11. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
12. ^ Jochen J.
Brocks, Graham A. Logan, Roger Buick,
Roger E. Summons, "Archean Molecular
Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 13 August 1999, p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short

and http://www.jstor.org/stable/2898534

13. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
14. ^ Science,
Vol 285, Issue 5430, 1033-1036 , 13
August 1999 Archean Molecular Fossils
and the Early Rise of
Eukaryotes Jochen J. Brocks, 1,2*
Graham A. Logan, 2 Roger Buick, 1 Roger
E. Summons 2
Northwestern Australia13 14  
[1] Jochen J. Brocks, Graham A. Logan,
Roger Buick, Roger E. Summons,
''Archean Molecular Fossils and the
Early Rise of Eukaryotes'', Science,
Vol 285, Issue 5430, 13 August 1999,
p1033-1036.
http://www.sciencemag.org/content/285/
5430/1033.short
and http://www.jstor.org/stable/2898534
COPYRIGHTED
source: http://www.sciencemag.org/conten
t/285/5430/1033.short
and http://www.jstor.org/stable/2898534

2,700,000,000 YBN
192)
FOOTNOTES
1. ^ Nagy, L.A. and Zumberge, J.E.,
1976. Fossil microorganisms from the
approximately 2800-2500
million-year-old Bulawaya
stromatolites: Application of
ultramicrochemical analyses. Proc.
Natl. Acad. Sci. Wash. 73, pp.
2973-2976. http://www.sciencedirect.com
/science/article/pii/S0301926800001261

2. ^ Nagy, L.A. and Zumberge, J.E.,
1976. Fossil microorganisms from the
approximately 2800-2500
million-year-old Bulawaya
stromatolites: Application of
ultramicrochemical analyses. Proc.
Natl. Acad. Sci. Wash. 73, pp.
2973-2976. http://www.sciencedirect.com
/science/article/pii/S0301926800001261

(Bulawaya rock sequence) Zimbabwe2
 

[1] Fig. 2. Organic microstructure from
the Bulawaya stromatolite, Zimbabwe (ca
2.7 Ga). (a) TEM-micrograph from
demineralized rock section. (b) Laser
mass spectrum from individual specimen
of the same population (negative ions).
Field of measurement ca 1 small mu,
Greekm diameter. Attribution of
signals: 12: C−, 13: CH−, 14:
CH−2, 16: O−, 17: OH−, 19: F−,
24: C−2, 25: C2H−, 26: CN−, 28:
Si−, 36: C−3, 37: C3H−, 40-42,
45: fragmental carbonaceous groups, 48:
C−4, 49: C4H−, 50: C4H−2, 60:
SiO−2, resp. C−5, 61: C5H−.
source: http://www.sciencedirect.com/sci
ence?_ob=MiamiCaptionURL&_method=retriev
e&_udi=B6VBP-42G6M5T-7&_image=fig5&_ba=5
&_user=4422&_coverDate=02%2F01%2F2001&_f
mt=full&_orig=browse&_cdi=5932&view=c&_a
cct=C000059600&_version=1&_urlVersion=0&
_userid=4422&md5=d9195635e48bcf1f817c009
69102189f

2,700,000,000 YBN
214)
FOOTNOTES
1. ^ Jochen J. Brocks, Graham A.
Logan, Roger Buick, Roger E. Summons,
"Archean Molecular Fossils and the
Early Rise of Eukaryotes", Science, Vol
285, Issue 5430, 1033-1036, 13 August
1999.
http://www.sciencemag.org/content/285/
5430/1033.abstract

2. ^ Jochen J. Brocks, Graham A. Logan,
Roger Buick, Roger E. Summons, "Archean
Molecular Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 1033-1036, 13 August 1999.
http://www.sciencemag.org/content/285/
5430/1033.abstract

3. ^ Jochen J. Brocks, Graham A. Logan,
Roger Buick, Roger E. Summons, "Archean
Molecular Fossils and the Early Rise of
Eukaryotes", Science, Vol 285, Issue
5430, 1033-1036, 13 August 1999.
http://www.sciencemag.org/content/285/
5430/1033.abstract

 
[1] Figure 1 and Table 2 from: Jochen
J. Brocks, Graham A. Logan, Roger
Buick, Roger E. Summons, ''Archean
Molecular Fossils and the Early Rise of
Eukaryotes'', Science, Vol 285, Issue
5430, 1033-1036, 13 August 1999,
http://www.sciencemag.org/content/285/
5430/1033.abstract COPYRIGHTED
source: http://www.sciencemag.org/conten
t/285/5430/1033.abstract

2,690,000,000 YBN
14 15
207)
FOOTNOTES
1. ^ Cavalier-Smith, annals of Botony
2005 vol95 issue 1
2. ^ Margulis, L.
1998. Symbiotic Planet: A New Look at
Evolution. Science Masters: Brockman
Inc, New York. Margulis, L., Dolan,
M., Guerrero, R. 2000. The Chimaeric
eukaryote: Origin of the nucleus from
the karyomastigont in amitochondriate
protists. Colloquium. 97: 6954-6959.
3. ^
Symbiosis in cell evolution : microbial
communities in the Archean and
Proterozoic eons / Lynn Margulis. 1993
second edition
4. ^ Cavalier-Smith, annals of
Botony 2005 vol95 issue 1
5. ^ Margulis,
L. 1998. Symbiotic Planet: A New Look
at Evolution. Science Masters: Brockman
Inc, New York. Margulis, L., Dolan,
M., Guerrero, R. 2000. The Chimaeric
eukaryote: Origin of the nucleus from
the karyomastigont in amitochondriate
protists. Colloquium. 97: 6954-6959.
6. ^
Symbiosis in cell evolution : microbial
communities in the Archean and
Proterozoic eons / Lynn Margulis. 1993
second edition
7. ^ Cavalier-Smith, annals of
Botony 2005 vol95 issue 1
8. ^ Margulis,
L. 1998. Symbiotic Planet: A New Look
at Evolution. Science Masters: Brockman
Inc, New York. Margulis, L., Dolan,
M., Guerrero, R. 2000. The Chimaeric
eukaryote: Origin of the nucleus from
the karyomastigont in amitochondriate
protists. Colloquium. 97: 6954-6959.
9. ^
Symbiosis in cell evolution : microbial
communities in the Archean and
Proterozoic eons / Lynn Margulis. 1993
second edition
10. ^ Cavalier-Smith, annals of
Botony 2005 vol95 issue 1
11. ^ Margulis,
L. 1998. Symbiotic Planet: A New Look
at Evolution. Science Masters: Brockman
Inc, New York. Margulis, L., Dolan,
M., Guerrero, R. 2000. The Chimaeric
eukaryote: Origin of the nucleus from
the karyomastigont in amitochondriate
protists. Colloquium. 97: 6954-6959.
12. ^
Symbiosis in cell evolution : microbial
communities in the Archean and
Proterozoic eons / Lynn Margulis. 1993
second edition
13. ^ Shih YL, Rothfield L.,
"The bacterial cytoskeleton.",
Microbiol Mol Biol Rev. 2006
Sep;70(3):729-54. http://www.ncbi.nlm.n
ih.gov/pubmed/16959967

14. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 +10mybn guess
and }
15. ^ guess based on ER and golgi
made of same material as cytoskeleton,
and after first eukaryote cell {Nucleus
2700 +10mybn guess and}
 
[1] English: Endothelial cells under
the microscope. Nuclei are stained blue
with DAPI, microtubles are marked green
by an antibody bound to FITC and actin
filaments are labelled red with
phalloidin bound to TRITC. Bovine
pulmonary artery endothelial
cells http://rsb.info.nih.gov/ij/images
/ PD
source: http://upload.wikimedia.org/wiki
pedia/commons/0/09/FluorescentCells.jpg


[2] FIG. 7. In vitro polymerization
of cytoskeletal proteins of the
MinD/ParA superfamily. (A) Formation of
MinD filament bundles in the presence
of MinE, ATP, and phospholipid
vesicles. One end of the bundle is
markedly frayed because of the presence
of MinE. (Reprinted from reference 198
with permission of the publisher.
Copyright 2003 National Academy of
Sciences, U.S.A.) (B) Formation of a
ParApTP228(ParF) filament bundle in the
presence of ParBpTP228(ParG) and ATP.
ParBpTP228(ParG) stimulates formation
of the frayed end(s) of the
ParApTP228(ParF) bundle. (Reprinted
from reference 11 by permission from
Macmillan Publishers Ltd.) (C)
Formation of Soj filaments in the
presence of DNA and ATP. (Reprinted
from reference 116 by permission from
Macmillan Publishers Ltd.) UNKNOWN
source: http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC1594594/bin/zmr0030621350007
.jpg

2,690,000,000 YBN
7
208)
FOOTNOTES
1. ^ Dr. P.D. Sharma, "Microbiology &
Plant Pathology", 2007,
p86. http://books.google.com/books?id=B
yDwOIWXp4MC&pg=PA86

2. ^ Campbell, Reece, et al.,
"Biology", Eighth Edition, 2008, p114.
3. ^
Campbell, Reece, et al., "Biology",
Eighth Edition, 2008, p114.
4. ^ Campbell,
Reece, et al., "Biology", Eighth
Edition, 2008, p114.
5. ^ Campbell, Reece, et
al., "Biology", Eighth Edition, 2008,
p114.
6. ^ Lynn Margulis, "Symbiosis as a
source of evolutionary innovation:
speciation and morphogenesis", 1991,
p135-136. http://books.google.com/books
?hl=en&lr=&id=3sKzeiHUIUQC&oi=fnd&pg=PA1
35

7. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -10mybn
guess}
 
[1] Cilia and flagella are projections
from the cell. They are made up of
microtubules , as shown in this cartoon
and are covered by an extension of the
plasma membrane. They are motile and
designed either to move the cell itself
or to move substances over or around
the cell. The primary purpose of cilia
in mammalian cells is to move fluid,
mucous, or cells over their surface.
Cilia and flagella have the same
internal structure. The major
difference is in their length. This
figure shows a cross section of a
cilium next to a longitudinal section.
Below, we will see how the microtubules
are organized in the core (shown in the
cartoon in this figure). Also shown is
the centriole or basal body that
organizes the formation and direction
of the cilia. COPYRIGHTED
source: Description Transmission
electron microscope image, showing an
example of green algae
(Chlorophyta). Chlamydomanas
reinhardtii is a unicellular flagellate
used as a model system in molecular
genetics work and flagellar motility
studies. This image is a
longitudinal section through the
flagella area. In the cell apex is the
basal body that is the anchoring site
for a flagella. Basal bodies originate
from and have a substructure similar to
that of centrioles, with nine
peripheral microtubule triplets(see
structure at bottom center of image).
The two inner microtubules of each
triplet in a basal body become the two
outer doublets in the flagella. This
image also shows the transition region,
with its fibers of the stellate
structure. The top of the image shows
the flagella passing through the cell
wall. Date 20 September
2007 Source Source and public domain
notice at
http://remf.dartmouth.edu/imagesindex.ht
ml Author Dartmouth Electron
Microscope Facility, Dartmouth
College PD


[2] This figure shows an electron
micrograph of a cross section of a
cilium. Note that you can see the
dynein arms and the nexin links. The
dynein arms have ATPase activity. In
the presence of ATP, they can move from
one tubulin to another. They enable the
tubules to slide along one another so
the cilium can bend. The dynein
bridges are regulated so that sliding
leads to synchronized bending. Because
of the nexin and radial spokes, the
doublets are held in place so sliding
is limited lengthwise. If nexin and the
radial spokes are subjected to enzyme
digestion, and exposed to ATP, the
doublets will continue to slide and
telescope up to 9X their length.
COPYRIGHTED
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/9/99/Chlamydomonas_T
EM_09.jpg/1280px-Chlamydomonas_TEM_09.jp
g

2,680,000,000 YBN
11
65) Eukaryote cells with linear
chromosomes (instead of a circular
chromosome) evolve.7

Perhaps the first eukaryote descended
from one of those prokaryotes with
linear DNA.8

Some prokaryotes without a single
circular chromosome are: Agrobacterium
tumefaciens (Proteobacteria), Borrellia
burgdorferi (Spirochaete), Streptomyces
griseus (Actinobacteria).9
Some
prokaryotes do not have just one circle
of DNA. Brucella melitensis has 2
circular chromosomes. Agrobacterium
tumefaciens has a circular and a linear
chromosome. Streptomyces griseus can
have one linear chromosome. Borrelia
burgdorferi contains a linear
chromosome and a number of variable
circular and linear plasmids.
Chromosomes are linear in eukaryotic
nuclei, but circular in eukaryote
organelles except for the mitochondria
of most cnidarians and some other
forms.10
FOOTNOTES
1. ^ Ted Huntington.
2. ^ Ted Huntington.
3. ^ Ted Huntington.
4. ^ Ted
Huntington.
5. ^ Ted Huntington.
6. ^ Alexey S. Kondrashov,
"EVOLUTIONARY GENETICS OF LIFE CYCLES",
Annual Review of Ecology and
Systematics Vol. 28: 391-435 (Volume
publication date November 1997)
http://arjournals.annualreviews.org/do
i/full/10.1146/annurev.ecolsys.28.1.391;
jsessionid=npo4ogeI2anbnHbeKO

7. ^ Ted Huntington.
8. ^ Ted Huntington.
9. ^ Alexey S.
Kondrashov, "EVOLUTIONARY GENETICS OF
LIFE CYCLES", Annual Review of Ecology
and Systematics Vol. 28: 391-435
(Volume publication date November 1997)
http://arjournals.annualreviews.org/do
i/full/10.1146/annurev.ecolsys.28.1.391;
jsessionid=npo4ogeI2anbnHbeKO

10. ^ Alexey S. Kondrashov,
"EVOLUTIONARY GENETICS OF LIFE CYCLES",
Annual Review of Ecology and
Systematics Vol. 28: 391-435 (Volume
publication date November 1997)
http://arjournals.annualreviews.org/do
i/full/10.1146/annurev.ecolsys.28.1.391;
jsessionid=npo4ogeI2anbnHbeKO

11. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 +20mybn
guess}

MORE INFO
[1] not all prokaryotes have
circle of
DNA: http://arjournals.annualreviews.or
g/doi/full/10.1146/annurev.ecolsys.28.1.
391;jsessionid=npo4ogeI2anbnHbeKO

[2] Jumas-Bilak E, Maugard C,
Michaux-Charachon S, Allardet-Servent
A, Perrin A, et al. 1995. Study of the
organization of the genomes of
Escherichia coli, Brucella melitensis
and Agrobacterium tumefaciens by
insertion of a unique restriction site.
Microbiology 141:2425-32 (Medline)
[3] Lezhava A,
Kameoka D, Sugino H, Goshi K, Shinkawa
H, et al. 1997. Chromosomal deletions
in Streptomyces griseus that remove the
afsA locus. Mol. Gen. Genet. 253:478-83
[4]
Marconi RT, Casjens S, Munderloh UG,
Samuels DS. 1996. Analysis of linear
plasmid dimers in Borrelia burgdorferi
sensu lato isolates: implications
concerning the potential mechanisms of
linear plasmid replication. J. Bact.
178:3357-61
 
[1] A DNA molecule is very long (a few
meters) but extremely thin (narrow;
measured in nanometers). Here is an
electron microscope photo of a DNA
strand: PD
source: http://rst.gsfc.nasa.gov/Sect20/
dna1.jpg


[2] [t Is this an accurate image? - Is
a chromosome made of a single wound
strand of DNA? update- no see image
8] Every cell in the human body
(except red blood cells) contains 23
pairs of chromosomes. (a) Each
chromosome is made up of a tightly
coiled strand of DNA. (b) DNA’s
uncoiled state reveals its familiar
double helix shape. If DNA is pictured
as a twisted ladder, its sides, made of
sugar and phosphate molecules, are
connected by (c) rungs made of
chemicals called bases. DNA has four
bases—adenine, thymine, guanine, and
cytosine—that form interlocking
pairs. The order of the bases along the
length of the ladder is the DNA
sequence. PD
source: https://www.llnl.gov/str/June03/
gifs/Stubbs1.gif

2,680,000,000 YBN
9
291) Eukaryote cell evolves two
intermediate stages between cell
division and DNA synthesis.6

In prokaryotes, DNA synthesis can take
place uninterrupted between cell
divisions, but eukaryotes duplicate
their DNA exactly once during a
discrete period between cell divisions.
This period is called the S (for
synthetic) phase. It is preceded by a
period called G1 (meaning "first gap")
and followed by a period called G2,
during which nuclear DNA synthesis does
not occur.7

For the first time, a cell is not
constantly synthesizing DNA and then
having a division period (as is the
case for all known prokaryotes), but
this cell has a period in between cell
division and DNA synthesis where DNA
synthesis is not performed.8
FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p45
2. ^ "cell."
Encyclopædia Britannica. Encyclopædia
Britannica Online. Encyclopædia
Britannica Inc., 2012. Web. 11 Mar.
2012.
<http://www.britannica.com/EBchecked/topi
c/101396/cell
>.
3. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p45
4. ^ "cell."
Encyclopædia Britannica. Encyclopædia
Britannica Online. Encyclopædia
Britannica Inc., 2012. Web. 11 Mar.
2012.
<http://www.britannica.com/EBchecked/topi
c/101396/cell
>.
5. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p45
6. ^ Michael
Sleigh, "Protozoa and Other Protists",
(London; New York: Edward Arnold,
1989).: p45
7. ^ "cell." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 11 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/101396/cell
>.
8. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p45
9. ^ S Blair
Hedges, Hsiong Chen, Sudhir Kumar,
Daniel YC Wang, Amanda S Thompson and
Hidemi Wa, "A genomic timescale for the
origin of eukaryotes", BMC Evolutionary
Biology 2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -20mybn
guess}

MORE INFO
[1] Cooper GM (2000). "Chapter
14: The Eukaryotic Cell Cycle". The
cell: a molecular approach (2nd ed.).
Washington, D.C: ASM Press. ISBN
0-87893-106-6. http://www.ncbi.nlm.nih.
gov/books/NBK9876/

[2] Campbell, Reece, et al, "Biology",
8th Edition, 2008, p228-245.
 
[1] Figure 14.1Phases of the cell
cycle The division cycle of most
eukaryotic cells is divided into four
discrete phases: M, G1, S, and G2. M
phase (mitosis) is usually followed by
cytokinesis. S phase is the period
during which DNA replication occurs.
The cell grows throughout interphase,
which includes G1, S, and G2. The
relative lengths of the cell cycle
phases shown here are typical of
rapidly replicating mammalian
cells. From: The Eukaryotic Cell
Cycle The Cell: A Molecular
Approach. 2nd edition. Cooper
GM. Sunderland (MA): Sinauer
Associates; 2000. Copyright © 2000,
Geoffrey M Cooper. COPYRIGHTED
source: http://www.ncbi.nlm.nih.gov/book
s/NBK9876/bin/ch14f1.jpg


[2] The cell cycle. Image from Purves
et al., Life: The Science of Biology,
4th Edition, by Sinauer Associates
(www.sinauer.com) and WH Freeman
(www.whfreeman.com) COPYRIGHTED
source: http://www.emc.maricopa.edu/facu
lty/farabee/biobk/cellcycle.gif

2,660,000,000 YBN
30
72) Mitosis evolves in Eukaryote
cells.22 23

Mitosis is the process in eukaryotic
cell division in which the chromosomes
are separated and the nucleus divides
resulting in two new nuclei, each of
which contains a complete and identical
copy of the parental chromosomes.
Mitosis is usually immediately followed
by cytokinesis, the division of the
cytoplasm.24 25

All eukaryote cells divide using the
same general plan.26 The cell division
cycle contains four stages, G1 ("first
gap"), S ("synthesis"), G2 ("second
gap"), and M ("mitotic phase".27 The
first three stages are called
"interphase" which alternates with the
mitotic phase. Interphase is a much
longer stage that often accounts for
90% of the cycle. During interphase the
cell grows and copies its chromosomes
in preparation for cell division. In
the mitotic phase, mitosis, division of
the nucleus is followed by
cytokinesis.28

Mitosis is thought to
have evolved from prokaryote binary
fission. That some proteins involved in
prokaryote binary fission are related
to eukaryotic proteins that function in
mitosis supports the idea that mitosis
evolved from prokaryote binary fission.
Possible intermediate stages can be
seen in some protists. In
dinoflagellates, replicated chromosomes
are attached to the nuclear envelope
which remains in one piece during cell
division. Microtubules from outside the
nucleus pass through the nucleus inside
cytoplasmic tunnels. The nucleus then
divides in a process similar to
prokaryote binary fission. In diatoms
and yeasts the nuclear envelope also
reamins together during cell division,
but inthese eukaryotes the microtubules
form a spindle within the nucleus.
Microtubules separate the chromosomes
and the nucleus splits into two nuclei.
Finally, in most eukaryotes including
plant and animal cells, the spindle
forms outside the nucleus, and the
nuclear envelope breaks down during
mitosis. Microtubules separate the
chromosomes, and the nuclear envelope
then forms again.29
FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: types of
mitosis, evolution of mitosis.
2. ^ Brusca and
Brusca, "Invertebrates", 2003,
p128-129. {BruscaCh05.pdf}
3. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: types of
mitosis, evolution of mitosis.
4. ^ Brusca and
Brusca, "Invertebrates", 2003,
p128-129. {BruscaCh05.pdf}
5. ^ "mitosis." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 12 Mar.
2012.
http://www.answers.com/topic/mitosis
6. ^ Campbell, Reece, et al, "Biology",
8th Edition, 2008, p230-233.
7. ^ Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).: types
of mitosis, evolution of mitosis.
8. ^ Brusca
and Brusca, "Invertebrates", 2003,
p128-129. {BruscaCh05.pdf}
9. ^ "mitosis." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 12 Mar.
2012.
http://www.answers.com/topic/mitosis
10. ^ Campbell, Reece, et al,
"Biology", 8th Edition, 2008, p230-233.
11. ^
Molly Fitzgerald-Hayes, Frieda
Reichsman, "DNA and Biotechnology",
2009, p195.
12. ^ Molly Fitzgerald-Hayes,
Frieda Reichsman, "DNA and
Biotechnology", 2009, p195.
13. ^ Campbell,
Reece, et al, "Biology", 8th Edition,
2008, p231.
14. ^ Michael Sleigh, "Protozoa
and Other Protists", (London; New York:
Edward Arnold, 1989).: types of
mitosis, evolution of mitosis.
15. ^ Brusca and
Brusca, "Invertebrates", 2003,
p128-129. {BruscaCh05.pdf}
16. ^ "mitosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 12
Mar. 2012.
http://www.answers.com/topic/mitosis
17. ^ Campbell, Reece, et al,
"Biology", 8th Edition, 2008, p230-233.
18. ^
Molly Fitzgerald-Hayes, Frieda
Reichsman, "DNA and Biotechnology",
2009, p195.
19. ^ Molly Fitzgerald-Hayes,
Frieda Reichsman, "DNA and
Biotechnology", 2009, p195.
20. ^ Campbell,
Reece, et al, "Biology", 8th Edition,
2008, p231.
21. ^ Campbell, Reece, et al,
"Biology", 8th Edition, 2008, p237.
22. ^
Michael Sleigh, "Protozoa and Other
Protists", (London; New York: Edward
Arnold, 1989).: types of mitosis,
evolution of mitosis.
23. ^ Brusca and Brusca,
"Invertebrates", 2003,
p128-129. {BruscaCh05.pdf}
24. ^ "mitosis." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 12
Mar. 2012.
http://www.answers.com/topic/mitosis
25. ^ Campbell, Reece, et al,
"Biology", 8th Edition, 2008, p230-233.
26. ^
Molly Fitzgerald-Hayes, Frieda
Reichsman, "DNA and Biotechnology",
2009, p195.
27. ^ Molly Fitzgerald-Hayes,
Frieda Reichsman, "DNA and
Biotechnology", 2009, p195.
28. ^ Campbell,
Reece, et al, "Biology", 8th Edition,
2008, p231.
29. ^ Campbell, Reece, et al,
"Biology", 8th Edition, 2008, p237.
30. ^ S
Blair Hedges, Hsiong Chen, Sudhir
Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -40mybn
guess}
 
[1] Mitosis divides genetic information
during cell division Source:
http://www.ncbi.nlm.nih.gov/About/primer
/genetics_cell.html This image is
from the Science Primer, a work of the
National Center for Biotechnology
Information, part of the National
Institutes of Health. As a work of the
U.S. federal government, the image is
in the public domain.
source: http://en.wikipedia.org/wiki/Mit
osis


[2] Prophase: The two round objects
above the nucleus are the centrosomes.
Note the condensed chromatin. from
Gray's Anatomy. Unless stated
otherwise, it is from the online
edition of the 20th U.S. edition of
Gray's Anatomy of the Human Body,
originally published in 1918. Online
editions can be found on Bartleby and
also on Yahoo!
source: UNKNOWN

2,650,000,000 YBN
7
170)
FOOTNOTES
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
3. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
5. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
6. ^ Ted Huntington.
7. ^ Battistuzzi,
Feijao, Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004). (2600-2700my)
 
[1] Bacillus specie soil
bacteria. UNKNOWN
source: http://www.scharfphoto.com/fine_
art_prints/archives/199812-054-Soil-Bact
eria.jpg


[2] Description Deutsch: Myxococcus
xanthus bildet Fruchtkörper, ca.
50-fach vergrößert. English:
Starving colony of Myxococcus xanthus
forms fruiting bodies. Date
August 2006 Source own work
by Trance Gemini Author Trance
Gemini on
de.wikipedia.org Permission (Reusing
this file) GFDL Other versions from
de.wikipedia
http://de.wikipedia.org/wiki/Bild:M._xan
thus_development.png 18:37, 22. Aug
2006 . . Trance Gemini . . 2088 x 1550
(4.365.260 Bytes) GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/4/42/M._xanthus_developmen
t.png

2,640,000,000 YBN
61 62
73) Eukaryote sex evolves. Two
identical cells fuse (isogamy)43 .
First diploid cell. First zygote.44 45
Increase in genetic variety.46
Haplontic life cycle.47 48

Eukaryotic sexual reproduction, which
is initially the fusion of two cells
and their nuclei, probably first occurs
in a single cell protist that usually
reproduces asexually by mitosis.49 Two
haploid eukaryote cells (cells with one
set of chromosomes each) merge and then
their nuclei merge (karyogamy) to form
the first diploid cell, a cell with two
sets of chromosomes, the first
zygote.50

This fusion of two haploid cells
results in the first diploid
single-celled organism, which then may
immediately divide (both nucleus and
cytoplasm by a single division) back to
two haploid cells.

Because of sex, two cells with
different DNA can mix providing more
genetic variety. Having two chromosome
sets also provides a backup copy of
important genes (sequences that code
for proteins, or nucleic acids) that
might be lost with only a set of single
chromosomes.51 52

This first sexual eukaryote cell and
its descendants will have a life cycle
with two phases, alternating between
haploid and diploid.53

Conjugation, the second major kind of
sexual phenomenon, which occurs in the
eukaryotes ciliates, involves the
fusion of gametic nuclei instead of
independent gamete cells.54

"Syngamy" refers to gamete fusion and
"karyogamy" to nucleus fusion. In most
cases syngamy is immediately followed
by karyogamy, as a result, a fertilized
zygote is produced.55

Note that gender (anisogamy) probably
evolves later, initially sex is
probably the fusion of two
indistinguishable cells (isogamy).56

Some protists have diploid nuclei with
two chromosomes of each type, such as
those found in the somatic cells of
most higher animals and plants, and
other protists have haploid nuclei with
unpaired chromosomes, such as those
found in the gametes of higher animals
and plants; polyploid nuclei with
several sets of chromosomes also occur
in protists. Diploid nuclei in protists
may undergo a process of meiosis to
produce haploid nuclei (a reduciton
division), but more commonly both
haploid and diploid nuclei divide by
mitosis to produce two child nuclei
like the original parent cell.57

Some of the genes related to the
process of meiosis occur in Giardia,
one of the most primitive living
protists, which is evidence that
meiosis may have evolved before the
evolution of all known eukaryotes.58

Now, two cells with different DNA can
mix providing more chance of variety
and mutation. Two chromosome sets
provides a backup copy of important
genes (sequences that code for
proteins, or nucleic acids) that might
be lost with only a set of single
chromosomes.

This first sexual eukaryote cell and
its descendants will have two phases, a
gamophase (haploid until syngamy
becoming diploid), and a zygophase
(from diploid until meiosis becoming
haploid).

For sexual species there are 3 basic
life cycles:
1) Haploid (Haplontic) life cycle:
(zygotic meiosis) Life as haploid
cells, cell division immediately after
creation of zygote from fusion. (All
fungi, Some green algae, Many
protozoa)
2) Diploid (Diplontic) life cycle:
(gametic meiosis) Instead of immediate
cell division, zygote reproduces by
mitosis. Haploid gametes never copy by
mitosis. (animals, some brown algae)
3)
Haplodiploid (Haplodiplontic,
Diplohaplontic, Diplobiontic) life
cycle: (sporic meiosis) Diploid cell
(sporocyte) meiosis results in two
haploid sporophytes (gamonts), not two
haploid gametes. These haploid cells
then differentiate? or mitosis? to form
haploid gametes. Haplodiplontic
organisms have alternation of
generations, one generation involves
diploid spore-producing single or
multicellular sporophytes (makes
spores) and the other generation
involves haploid single or
multicellular gamete-producing
multicellular gametophytes (makes
gametes). (Plants and many algae)

These first sexual cells are haplontic,
with zygotic meiosis; they reproduce
asexually through mitosis as haploid
cells, fusing to a diploid cell without
mitosis, then dividing back into
haploid cells.

An important evolutionary step evolves
here in that now two cells can
completely merge into one cell. This
merge not only includes their nuclei,
but also their cytoplasm (although the
DNA do not merge). Before now, as far
as has ever been observed, no two cells
have ever completely merged, although,
through conjugation some prokaryotes
have been observed to exchange DNA.

This is the beginning of the label
"gamete" for haploid cells that can
merge to form a diploid zygote. In
addition, the label "gametocyte" or
"gamont" is any polyploid cell that
divides (meiosis) into haploid gamete
cells which can merge to form a
zygote.


The alternation of meiosis and
fertilization is common to all
organisms that reproduce sexually, but
there are three main different types of
life cycles; haplontic, haplodiplontic,
and diplontic. Haplontic organisms are
predominantly haploid; mitosis does not
occur in the diploid phase. In
Haplodiplontic organisms, mitosis
occurs in both the haploid and diploid
phases. Diplontic organisms are
predominantly diploid; mitosis does not
occur in the haploid phase. Most fungi
and some protists including some algae
have a "haplontic" life cycle where
after gametes fuse and form a diploid
zygote, meiosis occurs without a
multicellular diploid offspring
developing. Meiosis produces not
gametes but haploid cells that then
divide by mitosis and give rise to
either unicellular descendents or a
haploid multicellular adult organism.
The haploid oganism then carries out
further mitoses producing cells that
develop into gametes. The only diplod
stage found in these species is the
singe-celled zygote. Plants and some
algae have a second type of lifestyle
called "haplodiplontic" or "alternation
of generations". This type includes
both diploid and haploid stages that
are multicellular. The multicellular
diploid stage is called the
"sporophyte". Meiosis in the sporophyte
produces haploid cells called spores.
Unlike a gamete, a haploid spore
doesn't fuse with another cell but
divides mitotically, generating a
multicellular haploid stage called the
gametophyte. Cells of the gametophyte
give rise to gametes by mitosis. Fusion
of two haploid gametes at
fertilizations results in a diploid
zygote, which develops into the next
sporophyte generation. A third type of
sexual life cycle, "diplontic", occurs
in animals in which gametes are the
only haploid cells. Meiosis occurs in
germ cells producing haploid gametes
that no other cell division prior to
fertilization. After fertilization the
diploid zygote divides by mitosis
producing a multicellular organism that
is diploid.59 60
FOOTNOTES
1. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
2. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
3. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p258.
4. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
5. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
6. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p258.
7. ^ Karen Arms, Pamela S. Camp,
"Biology", Third Edition, 1987,
p398. http://books.google.com/books?ei=
fjtmT96tDqPQiAKP2qyiDw&id=ga_uAAAAMAAJ

8. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
9. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
10. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p258.
11. ^ Glenn E. Croston, "Kaplan
AP biology", 2000,
p98. http://books.google.com/books?id=P
WsKAQAAMAAJ

12. ^ Janette B. Benson, Marshall M.
Haith, "Diseases and Disorders in
Infancy and Early Childhood", 2009,
p203.
13. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p252.
14. ^
John Ringo, "Fundamental Genetics",
2004, p201.
15. ^ Karen Arms, Pamela S. Camp,
"Biology", Third Edition, 1987,
p398. http://books.google.com/books?ei=
fjtmT96tDqPQiAKP2qyiDw&id=ga_uAAAAMAAJ

16. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
17. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
18. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p258.
19. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
20. ^ Mark
Kirkpatrick, "The evolution of
haploid-diploid life cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

21. ^ Glenn E. Croston, "Kaplan AP
biology", 2000,
p98. http://books.google.com/books?id=P
WsKAQAAMAAJ

22. ^ Janette B. Benson, Marshall M.
Haith, "Diseases and Disorders in
Infancy and Early Childhood", 2009,
p203.
23. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p252.
24. ^
John Ringo, "Fundamental Genetics",
2004, p201.
25. ^ Karen Arms, Pamela S. Camp,
"Biology", Third Edition, 1987,
p398. http://books.google.com/books?ei=
fjtmT96tDqPQiAKP2qyiDw&id=ga_uAAAAMAAJ

26. ^ Richard Dawkins, "The Ancestors
Tail", 2004, p626.
27. ^ Karen Arms, Pamela
S. Camp, "Biology", Third Edition,
1987,
p398. http://books.google.com/books?ei=
fjtmT96tDqPQiAKP2qyiDw&id=ga_uAAAAMAAJ

28. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
29. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
30. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p258.
31. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
32. ^ Mark
Kirkpatrick, "The evolution of
haploid-diploid life cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

33. ^ Glenn E. Croston, "Kaplan AP
biology", 2000,
p98. http://books.google.com/books?id=P
WsKAQAAMAAJ

34. ^ Janette B. Benson, Marshall M.
Haith, "Diseases and Disorders in
Infancy and Early Childhood", 2009,
p203.
35. ^ Charles W. Fox, Daphne J.
Fairbair, "Evolutionary ecology:
concepts and case studies", 2001,
p155. http://books.google.com/books?id=
_dCrIwP85vkC&pg=PA155

36. ^ Janet Louise Leonard, Alex
Córdoba-Aguilar, "The evolution of
primary sexual characters in animals",
2010, p15-16.
37. ^ Karen Arms, Pamela S. Camp,
"Biology", Third Edition, 1987,
p398. http://books.google.com/books?ei=
fjtmT96tDqPQiAKP2qyiDw&id=ga_uAAAAMAAJ

38. ^ "protist." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 17 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/480085/protist
>.
39. ^ Peter Calow, "The encyclopedia of
ecology & environmental management",
1998,
p680. http://books.google.com/books?id=
8LxE9RFpgJcC&pg=PA680

40. ^ Richard Dawkins, "The Ancestors
Tail", 2004, p626.
41. ^ Campbell, Reece, et
al, "Biology", Eigth Edition, 2008,
p252.
42. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
43. ^ Karen Arms,
Pamela S. Camp, "Biology", Third
Edition, 1987,
p398. http://books.google.com/books?ei=
fjtmT96tDqPQiAKP2qyiDw&id=ga_uAAAAMAAJ

44. ^ Sir Gavin De Beer, "Atlas of
Evolution", (London: Nelson, 1964).
45. ^
Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
46. ^ Campbell,
Reece, et al, "Biology", Eigth Edition,
2008, p258.
47. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
48. ^ Mark
Kirkpatrick, "The evolution of
haploid-diploid life cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

49. ^ Charles W. Fox, Daphne J.
Fairbair, "Evolutionary ecology:
concepts and case studies", 2001,
p155. http://books.google.com/books?id=
_dCrIwP85vkC&pg=PA155

50. ^ Janet Louise Leonard, Alex
Córdoba-Aguilar, "The evolution of
primary sexual characters in animals",
2010, p15-16.
51. ^ Glenn E. Croston, "Kaplan
AP biology", 2000,
p98. http://books.google.com/books?id=P
WsKAQAAMAAJ

52. ^ Janette B. Benson, Marshall M.
Haith, "Diseases and Disorders in
Infancy and Early Childhood", 2009,
p203.
53. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p252.
54. ^
"protist." Encyclopædia Britannica.
Encyclopædia Britannica Online.
Encyclopædia Britannica Inc., 2012.
Web. 17 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/480085/protist
>.
55. ^ Peter Calow, "The encyclopedia of
ecology & environmental management",
1998,
p680. http://books.google.com/books?id=
8LxE9RFpgJcC&pg=PA680

56. ^ Richard Dawkins, "The Ancestors
Tail", 2004, p626.
57. ^ Michael Sleigh,
"Protozoa and Other Protists", 1989,
p70-71.
58. ^ Marilee A. Ramesh, Shehre-Banoo
Malik, John M. Logsdon Jr., A
Phylogenomic Inventory of Meiotic
Genes: Evidence for Sex in Giardia and
an Early Eukaryotic Origin of Meiosis,
Current Biology, Volume 15, Issue 2, 26
January 2005, Pages 185-191, ISSN
0960-9822,
10.1016/j.cub.2005.01.003. (http://www.
sciencedirect.com/science/article/pii/S0
96098220500028X)

59. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p252.
60. ^
John Ringo, "Fundamental Genetics",
2004, p201.
61. ^ S Blair Hedges, Hsiong
Chen, Sudhir Kumar, Daniel YC Wang,
Amanda S Thompson and Hidemi Wa, "A
genomic timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -60mybn
guess)(was 2710mybn }
62. ^ estimate
based on diplomonads having sex repro,
and origin of euk being (is now)
{Nucleus 2700 -60mybn guess)(was
2710mybn}

MORE INFO
[1] J. William Schopf, "Major
Events in the History of Life",
(Boston, MA: Jones and Bartlett
Publishers, 1992).p57 (was)
 
[1] Theoretical first eukaryote
sex adapted from image of gametic
meiosis GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Zygotic_meiosis.jpg


[2] Zygotic Meiosis. GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Zygotic_meiosis.png

2,640,000,000 YBN
28
206) Meiosis evolves (one-step meiosis:
2 haploid cells or two pronuclei fuse
into a diploid cell and a divide into 2
haploid cells).19 20

Meiosis, which looks similar to
mitosis21 , is the process of cell
division in sexually reproducing
organisms that reduces the number of
chromosomes in reproductive cells from
diploid to haploid, leading to the
production of gametes in animals and
spores in plants.22

Most protists divide by two-step
meiosis, and meiosis with only one cell
division is rare.23 24 Some view
one-divisional meiosis as having an
independent and secondary origin25
while others view one-step meiosis as
the primitive meiotic process26 .

Without the reduction back to haploid,
genomes would double in size with every
generation.27

Mitosis and one-step meiosis are the
same with the only exception that: in
meiosis two haploid cells join (or 2
pronuclei fuse) before cell division,
but in mitosis the DNA is duplicated
internally in the nucleus before cell
division.

Meiosis can be one step (one fusion and
then one cell division) or two step
(fusion, DNA duplication and then two
divisions). Probably one step meiosis
evolved first and two step meiosis
later. The Protists Pyrsonympha and
Dinenympha have up to a four step
meiosis.

Because meiosis is similar and complex
in detail in all species that do
meiosis, people think that meiosis only
evolved once, and was inherited by all
species that do meiosis.
FOOTNOTES
1. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

2. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989)., no cross over in
one-division
3. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

4. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989)., no cross over in
one-division
5. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p253.
6. ^ "meiosis."
The American Heritage® Dictionary of
the English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 12 Jul. 2011.
http://www.answers.com/topic/meiosis
7. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

8. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989)., no cross over in
one-division
9. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p253.
10. ^ "meiosis."
The American Heritage® Dictionary of
the English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 12 Jul. 2011.
http://www.answers.com/topic/meiosis
11. ^ Richard Dawkins, "The Ancestors
Tail", 2004, p627.
12. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

13. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989)., no cross over in
one-division
14. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p253.
15. ^
"meiosis." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 12 Jul.
2011.
http://www.answers.com/topic/meiosis
16. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989), p72.
17. ^ Igor B.
Raikov, Meiosis in protists: Recent
advances and persisting problems,
European Journal of Protistology,
Volume 31, Issue 1, 15 March 1995,
Pages 1-7, ISSN 0932-4739,
10.1016/S0932-4739(11)80349-4. (http://
www.sciencedirect.com/science/article/pi
i/S0932473911803494)

18. ^ Richard Dawkins, "The Ancestors
Tail", 2004, p627.
19. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

20. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989)., no cross over in
one-division
21. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008, p253.
22. ^
"meiosis." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 12 Jul.
2011.
http://www.answers.com/topic/meiosis
23. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989), p72.
24. ^ Igor B.
Raikov, Meiosis in protists: Recent
advances and persisting problems,
European Journal of Protistology,
Volume 31, Issue 1, 15 March 1995,
Pages 1-7, ISSN 0932-4739,
10.1016/S0932-4739(11)80349-4. (http://
www.sciencedirect.com/science/article/pi
i/S0932473911803494)

25. ^ Igor B. Raikov, Meiosis in
protists: Recent advances and
persisting problems, European Journal
of Protistology, Volume 31, Issue 1, 15
March 1995, Pages 1-7, ISSN 0932-4739,
10.1016/S0932-4739(11)80349-4. (http://
www.sciencedirect.com/science/article/pi
i/S0932473911803494)

26. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989), p72.
27. ^ Richard
Dawkins, "The Ancestors Tail", 2004,
p627.
28. ^ Ted Huntington.

MORE INFO
[1] S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

 
[1] [t One-step zygotic meiosis (also
known as gametic meiosis)- gametes fuse
into 2n and then divide back into
1n] Drawn by self for Biological life
cycle Scan black/white/grey
outline Paint Shop Pro Reduce size
(by 20%) Brightness/contrast to get
rid of artifacts Copy-&-paste the
multicellular balls Fill-in
colours Labelling Re-fix details by
going back to Layer 1. Based on
Freeman & Worth's Biology of Plants (p.
171). GNU
source: http://upload.wikimedia.org/wiki
pedia/commons/2/23/Gametic_meiosis.png


[2] GametoGenesis. COPYRIGHTED EDU
source: http://www.bio.miami.edu/dana/10
4/gametogenesis.jpg

2,620,000,000 YBN
1
210)
FOOTNOTES
S Blair Hedges, Hsiong Chen, Sudhir
Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -80mybn
guess}
  
2,610,000,000 YBN
25
296)
FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
2. ^ Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).
3. ^
"anisogamy." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 29 May.
2012.
http://www.answers.com/topic/anisogamy
4. ^
http://howjsay.com/index.php?word=anisog
amy&submit=Submit

5. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
6. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 18 Mar. 2012.
http://www.answers.com/topic/anisogamy
7. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
8. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 29 May. 2012.
http://www.answers.com/topic/anisogamy
9. ^
http://howjsay.com/index.php?word=anisog
amy&submit=Submit

10. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
11. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 18 Mar. 2012.
http://www.answers.com/topic/anisogamy
12. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
13. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 29 May. 2012.
http://www.answers.com/topic/anisogamy
14. ^
http://howjsay.com/index.php?word=anisog
amy&submit=Submit

15. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
16. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 18 Mar. 2012.
http://www.answers.com/topic/anisogamy
17. ^ Ted Huntington.
18. ^ Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).
19. ^
"anisogamy." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 29 May.
2012.
http://www.answers.com/topic/anisogamy
20. ^
http://howjsay.com/index.php?word=anisog
amy&submit=Submit

21. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
22. ^ "anisogamy." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 18 Mar. 2012.
http://www.answers.com/topic/anisogamy
23. ^ Ted Huntington.
24. ^ Richard Dawkins, "The
Ancestor's Tale", 2004, p626.
25. ^ S Blair
Hedges, Hsiong Chen, Sudhir Kumar,
Daniel YC Wang, Amanda S Thompson and
Hidemi Wa, "A genomic timescale for the
origin of eukaryotes", BMC Evolutionary
Biology 2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -90mybn
guess}
 
[1] Description Different types of
en:anisogamy: A) Anisogamy of motile
gametes B) Oogamy (non-motile egg
cell, motile sperm cell) C) Anisogamy
of non-motile
gametes Date 2008-06-30 02:07
(UTC) Source Anisogamy.png Author
This SVG version by Qef
(talk) Anisogamy.png: Original
uploader was Tameeria at
en.wikipedia Later versions were
uploaded by Helix84 at
en.wikipedia. PD
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/a/a7/Anisogamy.svg/1
000px-Anisogamy.svg.png


[2] Mixing of: Fig. 7. Isogamous
(left, Gymnodinium nolleri) and
anisogamous (right, Alexandrium
tamutum) gamete pairs. © Rosa I.
Figueroa and Fig. 8. Fusing gamete
pair in Gymnodinium catenatum (left)
and its nuclei in fusion process. ©
Rosa I. Figueroa COPYRIGHTED
source: http://tolweb.org/tree/ToLimages
/dinolifecyclefig.7.250a.jpg

2,590,000,000 YBN
9
298) Sex between a flagellated gamete
and an unflagellated gamete evolves in
protists (oogamy {OoGomE7 }, a form of
anisogamy).8
FOOTNOTES
1. ^
http://howjsay.com/index.php?word=oogamy
&submit=Submit

2. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
3. ^
http://howjsay.com/index.php?word=oogamy
&submit=Submit

4. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
5. ^
http://howjsay.com/index.php?word=oogamy
&submit=Submit

6. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
7. ^
http://howjsay.com/index.php?word=oogamy
&submit=Submit

8. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
9. ^ S Blair Hedges,
Hsiong Chen, Sudhir Kumar, Daniel YC
Wang, Amanda S Thompson and Hidemi Wa,
"A genomic timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -110mybn
guess}
  
2,580,000,000 YBN
1
300) Only a few species exhibit this
property (e.g. the Oxymonad Notilla,
Diatoms, Dasicladales {Acetabularia},
in many foraminiferans, and in
gregarines).

Gamontogamy may have evolved into
two-step meiosis.

The vast majority of eukaryotes living
now that reproduce sexually fuse
haploid cells. All "gametes" are
haploid cells that can merge, diploid
cells that can merge are gamonts.
Gamonts (Meiocytes) are cells that
produce gametes.

In theory this should be very similar
if not exactly like haploid cell
fusion, so perhaps this is not a major
evolutionary step.
FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989). p76,p79
 
[1] The Oxymonad, Notila (diploid
Pacific form) life cycle. COPYRIGHTED
source: http://www.zoology.ubc.ca/~redfi
eld/clevelan/notila.GIF

2,570,000,000 YBN
11
295) Two-step meiosis (diploid DNA
copies and then the cell divides twice
into four haploid cells).8

Meiosis and mitosis are similar in
being nucleus and cell division, but
are different.
Differences between
meiosis and mitosis:
1) At least one crossover
per homologous pair happens in 2 step
meiosis but crossover usually does not
happen in mitosis. (explain crossover9
)
2) Two step meiosis involves cell
divisions that happen one after the
other, where the cell division of
mitosis only happens after one DNA
duplication (there are never 2 mitosis
divisions together without a DNA
duplication between them to my
knowledge).

The cell division in two step meiosis
that involves a separation of sister
chromatids (not homologous chromosome
pairs) is basically identical to
mitosis. For two step meiosis, this is
the second nucleus and cell division.

Later multistep meiosis evolves, where
there may be as many as 4 divisions
(for example in the protists
Pyrsonympha and Dinenympha).

(Determine if it can be said that
meiosis is simply a division after the
fusion of two nuclei while mitosis is a
division after an internucleus DNA
copy. Clearly the duplication of two
complete nuclei within a single
Eukaryote cell must include the inte
r-nucleus copying of DNA - and is
probably similar to a typical
prokaryote cell division. This process
just goes further in duplicating the
nuclear membrane too. Then the division
after the fusion of two nuclei must be
basically the same as a mitosis
division. So really, in this view, the
unique processes are: DNA, nucleus,
and/or cell copy, nucleus and/or cell
fusion, nucleus and/or cell division.10
)
FOOTNOTES
1. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

2. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

3. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

4. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989) p71.
5. ^ Igor B.
Raikov, Meiosis in protists: Recent
advances and persisting problems,
European Journal of Protistology,
Volume 31, Issue 1, 15 March 1995,
Pages 1-7, ISSN 0932-4739,
10.1016/S0932-4739(11)80349-4. (http://
www.sciencedirect.com/science/article/pi
i/S0932473911803494)

6. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

7. ^ Ted Huntington.
8. ^
http://www.zoology.ubc.ca/~redfield/rese
arch/clevelan.html

9. ^ Ted Huntington.
10. ^ Ted Huntington.
11. ^ S Blair
Hedges, Hsiong Chen, Sudhir Kumar,
Daniel YC Wang, Amanda S Thompson and
Hidemi Wa, "A genomic timescale for the
origin of eukaryotes", BMC Evolutionary
Biology 2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{Nucleus 2700 -130mybn
guess}
 
[1] GametoGenesis. COPYRIGHTED EDU
source: http://www.bio.miami.edu/dana/10
4/gametogenesis.jpg


[2] Sexual cycle oxymonas, identical
to saccinobaculus, one step meiosis.
haploid. COPYRIGHTED CANADA
source: http://www.zoology.ubc.ca/~redfi
eld/clevelan/oxymonas.GIF

2,558,000,000 YBN
6
171) The Eubacteria phylum
"Deinococcus-Thermus" evoles now
(includes Thermus Aquaticus {used in
PCR}, Deinococcus radiodurans {can
survive long exposure to radiation}).5


The Deinococcus-Thermus are a small
group of bacteria comprised of cocci
highly resistant to environmental
hazards. There are two main groups. The
Deinococcales include a single genus,
Deinococcus, with several species that
are resistant to radiation; they have
become famous for their ability to eat
nuclear waste and other toxic
materials, survive in the vacuum of
space and survive extremes of heat and
cold. The Thermales include several
genera resistant to heat. Thermus
aquaticus was important in the
development of the polymerase chain
reaction where repeated cycles of
heating DNA to near boiling make it
advantageous to use a thermo-stable DNA
polymerase enzyme. These bacteria have
thick cell walls that give them
gram-positive stains, but they include
a second membrane and so are closer in
structure to those of gram-negative
bacteria.

PHYLUM Deinococcus-Thermus
CLASS Deinococci
ORDER Deinococcales
ORDER Thermales
FOOTNOTES
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
3. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
5. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
6. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).

MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
 
[1] D. radiodurans growing on a
nutrient agar plate. The red color is
due to carotenoid pigment. Links to
816x711-pixel, 351KB JPG. Credit: M.
Daly, Uniformed Services University of
the Health Sciences NASA
source: http://science.nasa.gov/newhome/
headlines/images/conan/D_rad_dish.jpg


[2] Photomicrograph of Deinococcus
radiodurans, from
www.ornl.gov/ORNLReview/ v34 The Oak
Ridge National Laboratory United
States Federal Government This work
is in the public domain because it is a
work of the United States Federal
Government. This applies worldwide. See
Copyright.
source: http://en.wikipedia.org/wiki/Ima
ge:Deinococcus.jpg

2,558,000,000 YBN
14 15
172)
FOOTNOTES
1. ^ "cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

2. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
3. ^ S. Blair Hedges and
Sudhir Kumar, "Genomic clocks and
evolutionary timescales", Trends in
Genetics Volume 19, Issue 4 , April
2003, Pages 200-206, (2003).
4. ^
"cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

5. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
6. ^ S. Blair Hedges and
Sudhir Kumar, "Genomic clocks and
evolutionary timescales", Trends in
Genetics Volume 19, Issue 4 , April
2003, Pages 200-206, (2003).
7. ^
"cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

8. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
9. ^ S. Blair Hedges and
Sudhir Kumar, "Genomic clocks and
evolutionary timescales", Trends in
Genetics Volume 19, Issue 4 , April
2003, Pages 200-206, (2003).
10. ^
"cyanobacterium." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 28
Dec. 2011.
http://www.answers.com/topic/cyanobacter
ia

11. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
12. ^ S. Blair Hedges and
Sudhir Kumar, "Genomic clocks and
evolutionary timescales", Trends in
Genetics Volume 19, Issue 4 , April
2003, Pages 200-206, (2003).
13. ^ Jékely,
Gáspár. "Evolution of phototaxis."
Philosophical Transactions of the
Royal Society B: Biological Sciences
364 (October 2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

14. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
http://www.ncbi.nlm.nih.gov/pmc/articl
es/PMC533871/
{2558 mybn}
15. ^ S. Blair
Hedges and Sudhir Kumar, "Genomic
clocks and evolutionary timescales",
Trends in Genetics Volume 19, Issue 4 ,
April 2003, Pages 200-206, (2003).
{2558 mybn}

MORE INFO
[1] Tree of Life.
http://tolweb.org/tree/
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004)
[3] Journal of Molecular
Evolution Publisher: Springer-Verlag
New York ISSN: 0022-2844 (Paper)
1432-1432 (Online) Issue: Volume 42,
Number 2 Date: February 1996 Pages:
194 - 200
[4] Phylogenetic Relationships of
Nonaxenic Filamentous Cyanobacterial
Strains Based on 16S rRNA Sequence
Analysis jme_42_2_1996.pdf
[5]
http://en.wikipedia.org/wiki/Cyanobacter
ia

[6] S Blair Hedges, Hsiong Chen, Sudhir
Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

 
[1] Oscillatoria COPYRIGHTED EDU
source: http://www.stcsc.edu/ecology/alg
ae/oscillatoria.jpg


[2] Lyngbya COPYRIGHTED EDU
source: http://www.stanford.edu/~bohanna
n/Media/LYNGB5.jpg

2,558,000,000 YBN
6
315) PHYLUM Chloroflexi
CLASS
Chloroflexi
CLASS Thermomicrobia5
FOOTNOTES
1. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
2. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
3. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).
4. ^ Battistuzzi, Feijao,
Hedges, "A Genomic timescale of
prokaryote evolution: insights into
the origin of methanogenesis,
phototrophy, and the colonization of
land", BMC Evolutionary Biology,
(2004).
5. ^ "Chloroflexi". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Chloroflexi

6. ^ Battistuzzi, Feijao, Hedges, "A
Genomic timescale of prokaryote
evolution: insights into the origin of
methanogenesis, phototrophy, and the
colonization of land", BMC Evolutionary
Biology, (2004).

MORE INFO
[1] Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004)
[2] Tree of Life
http://tolweb.org/tree/
 
[1] Chloroflexus photomicrograph from
Doe Joint Genome Institute of US Dept
Energy PD
source: http://en.wikipedia.org/wiki/Ima
ge:Chlorofl.jpg

2,500,000,000 YBN
52) End of the Archean and start of the
Proterozoic {PrOTReZOiK or ProTReZOiK16
17 } Eon.18

The Proterozoic spans from 2,500 to 542
million years ago, and represents 42%
of Earth's history.19 20
FOOTNOTES
1. ^ "Proterozoic." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 05
Jun. 2012.
http://www.answers.com/topic/proterozoic

2. ^
http://howjsay.com/index.php?word=proter
ozoic&submit=Submit

3. ^
http://www.geosociety.org/science/timesc
ale/

4. ^
http://www.geosociety.org/science/timesc
ale/

5. ^ Harold Levin, "The Earth Through
Time", 8th Edition, 2006, p243.
6. ^
"Proterozoic." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 05 Jun.
2012.
http://www.answers.com/topic/proterozoic

7. ^
http://howjsay.com/index.php?word=proter
ozoic&submit=Submit

8. ^
http://www.geosociety.org/science/timesc
ale/

9. ^
http://www.geosociety.org/science/timesc
ale/

10. ^ Harold Levin, "The Earth Through
Time", 8th Edition, 2006, p243.
11. ^
"Proterozoic." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 05 Jun.
2012.
http://www.answers.com/topic/proterozoic

12. ^
http://howjsay.com/index.php?word=proter
ozoic&submit=Submit

13. ^
http://www.geosociety.org/science/timesc
ale/

14. ^
http://www.geosociety.org/science/timesc
ale/

15. ^ Harold Levin, "The Earth Through
Time", 8th Edition, 2006, p243.
16. ^
"Proterozoic." The American Heritage®
Dictionary of the English Language,
Fourth Edition. Houghton Mifflin
Company, 2004. Answers.com 05 Jun.
2012.
http://www.answers.com/topic/proterozoic

17. ^
http://howjsay.com/index.php?word=proter
ozoic&submit=Submit

18. ^
http://www.geosociety.org/science/timesc
ale/

19. ^
http://www.geosociety.org/science/timesc
ale/

20. ^ Harold Levin, "The Earth Through
Time", 8th Edition, 2006, p243.
 
[1] Geologic Time Scale 2009 UNKNOWN
source: http://www.geosociety.org/scienc
e/timescale/timescl.pdf

2,500,000,000 YBN
56) Banded Iron Formation starts to
appear in many places.3 4
FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^
greenspirit.uk
3. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
4. ^
greenspirit.uk
 
[1] portion taken
from: Description English: This
image shows a 2.1 billion years old
rock containing black-banded ironstone,
which has a weight of about 8.5 tons.
The approximately two meter high, three
meter wide, and one meter thick block
of stone was found in North America and
belongs to the National Museum of
Mineralogy and Geology in Dresden,
Germany. The rock is located at
+51°2'34.84''
+13°45'26.67''. Deutsch: Dieses Bild
zeigt einen etwa 8,5 Tonnen schweren
und 2,1 Milliarden Jahre alten Block
mit Bändereisenerzen. Der etwa zwei
Meter hohe, drei Meter breite und einen
Meter tiefe Gesteinsblock wurde in
Nordamerika gefunden und gehört dem
Staatlichen Museum für Mineralogie und
Geologie Dresden. Der Block befindet
sich bei den Koordinaten +51°2'34.84''
+13°45'26.67''. Camera
data Camera Nikon D70 Lens Tamron
SP AF 90mm/2.8 Di Macro 1:1 Focal
length 90 mm Aperture f/2.8 Exposure
time 1/250 s Sensivity ISO 200 Please
help translating the description into
more languages. Thanks a lot! If
you want a license with the conditions
of your choice, please email me to
negotiate terms. best new
image Date 26 August
2005 Source Own
work Author André Karwath aka
Aka CC
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/5/5f/Black-band_iron
stone_%28aka%29.jpg/1280px-Black-band_ir
onstone_%28aka%29.jpg


[2] This rock resulted from
accumulations of ferrous Iron (Fe+2) in
oceans and lakes (which were more green
in color than today; ferrous iron can
produce that color as, for example, in
a Coca-Cola glass bottle). The Iron
readily combined with any available
oxygen, so that the latter was always
destined to be caught up in the iron
precipitates (Fe2O3) and thus didn't
remain in the atmosphere. While BIF is
a hallmark of sedimentary rock
formations during this extended period,
other rocks also formed (shales;
sandstones) but carbonates (limestones)
were much less commmon. Starting about
2.3 billion years ago, oxygen levels
and other factors led to common
production of ferric oxides (Hematite)
that made prominent red beds
periodically to the present. One
variety includes alternating chert
layers, some rich in iron PD
source: http://rst.gsfc.nasa.gov/Sect19/
2929573315_7bb69aeebb.jpg

2,400,000,000 YBN
59)
FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
3. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005).
 
[1] snowball Earth UNKNOWN
source: http://www.cosmosmagazine.com/fi
les/imagecache/feature/files/features/pr
int/20090528_snowball_earth.jpg


[2] Snowball Earth Snowball Earth
describes a theory that for millions of
years the Earth was entirely smothered
in ice, stretching from the poles to
the tropics. This freezing happened
over 650 million years ago in the
Pre-Cambrian, though it's now thought
that there may have been more than one
of these global glaciations. They
varied in duration and extent but
during a full-on snowball event, life
could only cling on in ice-free
refuges, or where sunlight managed to
penetrate through the ice to allow
photosynthesis. UNKNOWN
source: http://www.bbc.co.uk/nature/imag
es/ic/credit/640x395/s/sn/snowball_earth
/snowball_earth_1.jpg

2,400,000,000 YBN
7 8 9
316) (Determine if this is just an
example of a cell forming a spore.
Clearly forming a spore can be viewed
as cell differentiation. But clearly, a
cell changes form in small ways all the
time.5 )

Which cell differentiation is first is
unknown, between cells that form
spores, or cysts, and the cell
differentiation that is observed in
cyanobacterial filamentous cells.

Heterocysts are specialized
nitrogen-fixing cells formed by some
filamentous cyanobacteria, such as
Nostoc punctiforme and Anabaena
sperica, during nitrogen starvation.
They fix nitrogen from dinitrogen (N2)
in the air using the enzyme
nitrogenase, in order to provide the
cells in the filament with nitrogen for
biosynthesis. Nitrogenase is
inactivated by oxygen, so the
heterocyst must create a microanaerobic
environment. The heterocysts' unique
structure and physiology requires a
global change in gene expression. For
example, heterocysts:

* produce three additional cell
walls, including one of glycolipid that
forms a hydrophobic barrier to oxygen
*
produce nitrogenase and other proteins
involved in nitrogen fixation
* degrade
photosystem II, which produces oxygen
* up
regulate glycolytic enzymes, which use
up oxygen and provide energy for
nitrogenase
* produce proteins that scavenge
any remaining oxygen

Cyanobacteria usually obtain a fixed
carbon (carbohydrate) by
photosynthesis. The lack of photosystem
II prevents heterocysts from
photosynthesising, so the vegetative
cells provide them with carbohydrates,
which is thought to be sucrose. The
fixed carbon and nitrogen sources are
exchanged though channels between the
cells in the filament. Heterocysts
maintain photosystem I, allowing them
to generate ATP by cyclic
photophosphorylation.

Single heterocysts develop about every
9-15 cells, producing a one-dimensional
pattern along the filament. The
interval between heterocysts remains
approximately constant even though the
cells in the filament are dividing. The
bacterial filament can be seen as a
multicellular organism with two
distinct yet interdependent cell types.
Such behaviour is highly unusual in
prokaryotes and may have been the first
example of multicellular patterning in
evolution. Once a heterocyst has
formed, it cannot revert to a
vegetative cell, so this
differentiation can be seen as a form
of apoptosis. Certain
heterocyst-forming bacteria can
differentiate into spore-like cells
called akinetes or motile cells called
hormogonia, making them the most
phenotyptically versatile of all
prokaryotes.

The mechanism of controlling
heterocysts is thought to involve the
diffusion of an inhibitor of
differentiation called PatS. Heterocyst
formation is inhibited in the presence
of a fixed nitrogen source, such as
ammonium or nitrate. The bacteria may
also enter a symbiotic relationship
with certain plants. In such a
relationship, the bacteria do not
respond to the availability of
nitrogen, but to signals produced by
the plant. Up to 60% of the cells can
become heterocysts, providing fixed
nitrogen to the plant in return for
fixed carbon.

The cyanobacteria that form heterocysts
are divided into the orders Nostocales
and Stigonematales, which form simple
and branching filaments respectively.
Together they form a monophyletic
group, with very low genetic
variability.6
FOOTNOTES
1. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

2. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

3. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

4. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

5. ^ Ted Huntington.
6. ^ "Heterocyst". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Heterocyst
7. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

8. ^ N. G. Carr, B. A. Whitton, "The
biology of blue-green algae", p238.
http://books.google.com/books?id=fSRPg-D
0Jk0C&pg=PA238&lpg=PA238

9. ^ GOLUBIC, STJEPKO, VLADIMIR N.
SERGEEV, and ANDREW H. KNOLL.
“Mesoproterozoic Archaeoellipsoidès:
Akinetes of Heterocystous
Cyanobacteria.” Lethaia 28.4 (1995):
285–298. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1502-3931.1995.tb01817.
x/abstract


MORE INFO
[1] Bonner J. T. 1998 The origins
of multicellularity. Integr. Biol. 1,
27–36.
(doi:10.1002/(SICI)1520-6602(1998)1:1<27::AID-INBI4>3.0
.CO;2-6)
http://onlinelibrary.wiley.com/doi/10.
1002/(SICI)1520-6602(1998)1:1%3C27::AID-
INBI4%3E3.0.CO;2-6/abstract;jsessionid=D
EEFA3C8E4647CC2CECE51E3692EAF4B.d01t03

 
[1] Adapted from: Anabaena smitthi
COPYRIGHTED FRANCE
source: http://www.ac-rennes.fr/pedagogi
e/svt/photo/microalg/anabaena.jpg


[2] Anabaena COPYRIGHTED EDU
source: http://home.manhattan.edu/~franc
es.cardillo/plants/monera/anabaena.gif

2,400,000,000 YBN
19 20 21
322) Nitrogen fixation. Cells can make
nitrogen compounds like ammonia from
Nitrogen gas.14

Without bacteria that convert N2 into
nitrogen compounds, the supply of
nitrogen necessary for much of life
would be seriously limited and would
drastically slow evolution on earth.

Nitrogen
fixation is the process by which
nitrogen is taken from its relatively
inert molecular form (N2) in the
atmosphere and converted into nitrogen
compounds useful for other chemical
processes (such as, notably, ammonia,
nitrate and nitrogen dioxide).15

Nitrogen fixation is performed
naturally by a number of different
prokaryotes, including bacteria, and
actinobacteria certain types of
anaerobic bacteria. Many higher plants,
and some animals (termites), have
formed associations with these
microorganisms.16

The best-known are legumes (such as
clover, beans, alfalfa and peanuts,)
which contain symbiotic bacteria called
rhizobia within nodules in their root
systems, producing nitrogen compounds
that help the plant to grow and compete
with other plants. When the plant dies,
the nitrogen helps to fertilize the
soil. The great majority of legumes
have this association, but a few genera
(e.g., Styphnolobium) do not. 17
FOOTNO
TES
1. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

2. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

3. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

4. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

5. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

6. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

7. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

8. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

9. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

10. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

11. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

12. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

13. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

14. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

15. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

16. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

17. ^ "Nitrogen fixation". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Nitrogen_fi
xation

18. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

19. ^ Tomitani, Akiko et al. “The
Evolutionary Diversification of
Cyanobacteria: Molecular–phylogenetic
and Paleontological Perspectives.”
Proceedings of the National Academy of
Sciences 103.14 (2006): 5442
–5447. http://www.pnas.org/content/10
3/14/5442.full

20. ^ N. G. Carr, B. A. Whitton, "The
biology of blue-green algae", p238.
http://books.google.com/books?id=fSRPg-D
0Jk0C&pg=PA238&lpg=PA238

21. ^ GOLUBIC, STJEPKO, VLADIMIR N.
SERGEEV, and ANDREW H. KNOLL.
“Mesoproterozoic Archaeoellipsoidès:
Akinetes of Heterocystous
Cyanobacteria.” Lethaia 28.4 (1995):
285–298. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1502-3931.1995.tb01817.
x/abstract

West Africa18  
[1] Fig. 2. Modern cyanobacterial
akinetes and Archaeoellipsoides
fossils. (A) Three-month-old culture of
living A. cylindrica grown in a medium
without combined nitrogen. A, akinete;
H, heterocyst; V, vegetative cells.
(B–D) Shown are Archaeoellipsoides
fossils from 1,500-Ma Billyakh Group,
northern Siberia (B); 1,650-Ma McArthur
Group, northern Australia (C); and
2,100-Ma Franceville Group, Gabon (D).
(Scale bars, 10 μm.) COPYRIGHTED
source: http://www.pnas.org/content/103/
14/5442/F2.large.jpg


[2] Fig. 2. Modern cyanobacterial
akinetes and Archaeoellipsoides
fossils. (A) Three-month-old culture of
living A. cylindrica grown in a medium
without combined nitrogen. A, akinete;
H, heterocyst; V, vegetative cells.
(B–D) Shown are Archaeoellipsoides
fossils from 1,500-Ma Billyakh Group,
northern Siberia (B); 1,650-Ma McArthur
Group, northern Australia (C); and
2,100-Ma Franceville Group, Gabon (D).
(Scale bars, 10 μm.) COPYRIGHTED
source: http://www.pnas.org/content/103/
14/5442/F2.large.jpg

2,335,000,000 YBN
5
290)
FOOTNOTES
1. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p48 nucleolus
divides
2. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p48 nucleolus
divides
3. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p48 nucleolus
divides
4. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).: p48 nucleolus
divides
5. ^ Ted Huntington guess
 
[1] Nucleolus, COPYRIGHTED
source: http://www.eccentrix.com/members
/chempics/Slike/cell/Nucleolus.jpg


[2] With the combination of x-rays
from the Advanced Light Source and a
new protein-labeling technique,
scientists can see the distribution of
the nucleoli within the nucleus of a
mammary epithelial cell. USG PD
source: http://www.lbl.gov/Science-Artic
les/Archive/xray-inside-cells.html

2,330,000,000 YBN
198)
 
[1] Figure 1 : Image of n, endoplasmic
reticulum and Golgi apparatus. (1)
Nucleus. (2) Nuclear pore. (3) Rough
endoplasmic reticulum (RER). (4) Smooth
endoplasmic reticulum (SER). (5)
Ribosome on the rough ER. (6) Proteins
that are transported. (7) Transport
vesicle. (8) Golgi apparatus. (9) Cis
face of the Golgi apparatus. (10) Trans
face of the Golgi apparatus. (11)
Cisternae of the Golgi apparatus. I
am the copyright holder of that image
(I might even have the CorelDraw file
around somewhere:-), and I hereby place
the image and all partial images
created from it in the public domain.
So, you are free to use it any way you
like. In fact, I am delighted that one
of my drawings makes it into
print! I can mail you the .cdr file,
if you like (and if I can find it), if
you need a better resolution for
printing. Yours, Magnus
Manske Source: See also User:Magnus
Manske
source: http://en.wikipedia.org/wiki/Ima
ge:Nucleus_ER_golgi.jpg


[2] Description English: The
elongation and membrane targeting
stages of eukaryotic translation. The
ribosome is green and yellow, the tRNAs
are dark blue, and the other proteins
involved are light blue. CC
source: http://upload.wikimedia.org/wiki
pedia/commons/3/3c/Translation.gif

2,325,000,000 YBN
199) Eukaryote Golgi Apparatus evolves
(packages proteins and lipids into
vesicles for delivery to targeted
destinations).7

A vesicle is a closed structure, found
only in eukaryotic cells, that is
completely surrounded by a membrane
but, unlike a vacuole, contains
material that is not in the liquid
state.8

(Is this the only form of cellular
digestion?9 )
FOOTNOTES
1. ^ "Golgi apparatus." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 28 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/238044/Golgi-apparatus
>.
2. ^ "Golgi apparatus." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 28 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/238044/Golgi-apparatus
>.
3. ^ "Golgi apparatus." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 28 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/238044/Golgi-apparatus
>.
4. ^ "Vesicle", Oxford Dictionary of
Biochemistry. Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
All rights reserved.
http://www.answers.com/topic/vesicle
5. ^ "Golgi apparatus." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 28 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/238044/Golgi-apparatus
>.
6. ^ "Vesicle", Oxford Dictionary of
Biochemistry. Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
All rights reserved.
http://www.answers.com/topic/vesicle
7. ^ "Golgi apparatus." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 28 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/238044/Golgi-apparatus
>.
8. ^ "Vesicle", Oxford Dictionary of
Biochemistry. Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
All rights reserved.
http://www.answers.com/topic/vesicle
9. ^ Ted Huntington.

MORE INFO
[1] "Endosome." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 28 Dec. 2011.
http://www.answers.com/topic/endosome
 
[1] Figure 1: Image of nucleus,
endoplasmic reticulum and Golgi
apparatus: (1) Nucleus, (2) Nuclear
pore, (3) Rough endoplasmic reticulum
(RER), (4) Smooth endoplasmic reticulum
(SER), (5) Ribosome on the rough ER,
(6) Proteins that are transported, (7)
Transport vesicle, (8) Golgi apparatus,
(9) Cis face of the Golgi apparatus,
(10) Trans face of the Golgi apparatus,
(11) Cisternae of the Golgi apparatus,
(12) Secretory vesicle, (13) Plasma
membrane, (14) Exocytosis, (15)
Cytoplasm, (16) Extracellular space.
source: http://en.wikipedia.org/wiki/Ima
ge:Nucleus_ER_golgi_ex.jpg


[2] no description UNKNOWN
source: http://sun.menloschool.org/~cwea
ver/cells/e/lysosomes/

2,300,000,000 YBN
47) Evidence of free oxygen
accumulating in the air of Earth for
the first time, most recent uraninite
{YRANninIT7 }, a mineral that cannot
exist for much time if exposed to
oxygen.8
FOOTNOTES
1. ^
http://howjsay.com/index.php?word=uranin
ite&submit=Submit

2. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
3. ^
http://howjsay.com/index.php?word=uranin
ite&submit=Submit

4. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
5. ^
http://howjsay.com/index.php?word=uranin
ite&submit=Submit

6. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
7. ^
http://howjsay.com/index.php?word=uranin
ite&submit=Submit

8. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
  
2,300,000,000 YBN
48) The oldest "Red Beds", iron oxide
formed on land, begin here, and are
also evidence of more free oxygen in
the air of Earth.11 12
FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

3. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
4. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

5. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
6. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

7. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
8. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

9. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
10. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

11. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
12. ^
http://www.es.ucsc.edu/~pkoch/lectures/l
ecture5.html

 
[1]
http://www.kgs.ukans.edu/Extension/redhi
lls/redhills.html
source: http://www.kgs.ukans.edu/Extensi
on/redhills/redhills.html


[2] In Archean rocks, metals tend to
occur in low oxidation states (for
example, Fe2+ instead of Fe3+)
indicating a high metal:oxygen ratio in
the oceans and atmosphere. The
sediments are essentially rust-free.
After the late Proterozoic,
sedimentary deposits often have reddish
colors and are called red beds due to
the presence of iron-oxide coatings
between sand grains. From the later
Proterozoic onward, enough free oxygen
has been available to oxidize iron in
sediments. A sandstone butte outside
of Sedona, Arizona. Public domain
image by Jon Sullivan. PD
source: http://upload.wikimedia.org/wiki
pedia/commons/3/38/Butte_pdphoto_roadtri
p_24_bg_021604.jpg

2,156,000,000 YBN
2
150)
FOOTNOTES
1. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
2. ^ Russell F. Doolittle,
Da-Fei Feng, Simon Tsang, Glen Cho,
Elizabeth Little, "Determining
Divergence Times of the Major Kingdoms
of Living Organisms with a Protein
Clock", Science, (1996).
  
2,000,000,000 YBN
15 16 17
63) A parasitic bacterium, closely
related to Rickettsia prowazekii, an
aerobic proteobacteria, is engulfed by
an early eukaryote cell and over time a
symbiotic relationship evolves, where
the Rickettsia forms the mitochondria.


Mitochondria are membrane-bound
organelle found in the cytoplasm of
almost all eukaryotic cells where
cellular respiration occurs and most of
the ATP in a eukaryote cell is
produced. Mitochondria are typically
round to oval in shape and range in
size from 0.5 to 10 μm. The number of
mitochondria per cell varies widely;
for example, in humans, erythrocytes
(red blood cells) do not contain any
mitochondria, whereas liver cells and
muscle cells may contain hundreds or
even thousands. Mitochondria are unlike
other cellular organelles in that they
have two distinct membranes and a
unique genome and reproduce by binary
fission; these features indicate that
mitochondria share an evolutionary past
with prokaryotes.12

In eukaryotes the mitochondria perform
the Citric Acid Cycle and Oxidative
phosphorylation using oxygen to
breakdown pyruvagte from glycolysis
into CO2 and H2O, and provide up 36 ATP
molecules.13

This presumes that all known living
eukaryotes descend from a eukaryote
that had mitochondria, and that
eukaryotes without mitochondria, like
the metamonada, lost their mitochondria
secondarily.14
FOOTNOTES
1. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

2. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

3. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4

4. ^ "mitochondrion." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 23 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/386130/mitochondrion
>.
5. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p100.
6. ^
"mitochondrion." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 23 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/386130/mitochondrion
>.
7. ^ Campbell, Reece, et al, "Biology",
Eigth Edition, 2008, p162,166,176.
8. ^
http://comenius.susqu.edu/BI/202/Protist
s/EUKARYA-DOMAIN.htm

9. ^ "mitochondrion." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 23 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/386130/mitochondrion
>.
10. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008,
p162,166,176.
11. ^
http://comenius.susqu.edu/BI/202/Protist
s/EUKARYA-DOMAIN.htm

12. ^ "mitochondrion." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 23 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/386130/mitochondrion
>.
13. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2008,
p162,166,176.
14. ^
http://comenius.susqu.edu/BI/202/Protist
s/EUKARYA-DOMAIN.htm

15. ^ B. Franz Lang, Michael W. Gray,
and Gertraud Burger, "Mitochondrial
Genome Evolution and the Origin of
Eukaryotes", Annu. Rev. Genet., V33,
p351-397, p385. 1999. {2 BYBN}
16. ^ S.
Blair Hedges, "The Origin and Evolution
of Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/full/nrg929.html
{average of)
2230-1840 bybn} {earliest of) 2350-1640
bybn} {average of 1995my) 2350-1640
mybn}
17. ^ S Blair Hedges, Hsiong Chen,
Sudhir Kumar, Daniel YC Wang, Amanda S
Thompson and Hidemi Wa, "A genomic
timescale for the origin of
eukaryotes", BMC Evolutionary Biology
2001, 1:4
doi:10.1186/1471-2148-1-4,
(2001). http://www.biomedcentral.com/14
71-2148/1/4
{1.8 bybn}

MORE INFO
[1] Michael W. Gray, et al,
"Genome structure and gene content in
protist mitochondrial DNAs", Nucl.
Acids Res. (1998) 26(4): 865-878
doi:10.1093/nar/26.4.865
http://nar.oxfordjournals.org/content/
26/4/865.full

 
[1] Figure from: Michael W. Gray, et
al, ''Genome structure and gene content
in protist mitochondrial DNAs'',
Nucl. Acids Res. (1998) 26(4):
865-878 doi:10.1093/nar/26.4.865
http://nar.oxfordjournals.org/content/
26/4/865.full Phylogenetic hypothesis
of the eukaryotic lineage based on
ultrastructural and molecular data.
Organisms are divided into three main
groups distinguished by mitochondrial
cristal shape (either discoidal,
flattened or tubular). Unbroken lines
indicate phylogenetic relationships
that are firmly supported by available
data; broken lines indicate
uncertainties in phylogenetic
placement, resolution of which will
require additional data. Color coding
of organismal genus names indicates
mitochondrial genomes that have been
completely (Table 1), almost completely
(Jakoba, Naegleria and
Thraustochytrium) or partially (*)
sequenced by the OGMP (red), the FMGP
(black) or other groups (green). Names
in blue indicate those species whose
mtDNAs are currently being sequenced by
the OGMP or are future candidates for
complete sequencing. Amitochondriate
retortamonads are positioned at the
base of the tree, with broken arrows
denoting the endosymbiotic origin(s) of
mitochondria from a Rickettsia-like
eubacterium. Macrophar.,
Macropharyngomonas.
source: http://nar.oxfordjournals.org/co
ntent/vol26/issue4/images/gkb18201.gif


[2] Figure 1 Phylogenetic tree of
eukaryotes based on ultrastructural and
molecular data. Organisms are
sub-divided into main groups as
discussed in the text. Only a few
representative species for which
complete (or almost complete) mtDNA
sequences are known are shown in each
lineage. In some cases, line drawings
or actual pictures of the organisms are
provided (Acanthamoeba, M. Nagata; URL:
http://protist.i.hosei.ac.jp/PDB/PCD3379
/htmls/21.html; Allomyces, Tom Volk;
URL:
http://botit.botany.wisc.edu/images/332/
Chytridiomycota/Allomyces_r_So_pa/A._arb
uscula_pit._sporangia_tjv.html;
Amoebidium, URL:
http://cgdc3.igmors.upsud.fr/microbiolog
ie/mesomycetozoaires.htm; Marchantia,
URL:
http://www.science.siu.edu/landplants/He
patophyta/images/March.female.JPEG
Scenedesmus, Entwisle et al.,
http://www.rbgsyd.gov.au/_data/page/1824
/Scenedesmus.gif). The color-coding of
the main groups (alternating between
dark and light blue) on the outer
circle corresponds to the color-coding
of the species names. Unbroken lines
indicate phylogenetic relationships
that are firmly supported by available
molecular data; broken lines indicate
uncertainties in phylogenetic
placement, resolution of which will
require additional sequence data. [t:
why not color code or add which type of
mito?]
source: http://arjournals.annualreviews.
org/doi/full/10.1146/annurev.genet.37.11
0801.142526

1,982,000,000 YBN
17 18 19 20
99)
FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p425,434.
2. ^ Richard Cowen,
"History of Life", (Malden, MA:
Blackwell, 2005).
3. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p425,434.
4. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
5. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p425,434.
6. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
7. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p425,434.
8. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
9. ^ Thomas R. Bürglin,
"Analysis of TALE superclass homeobox
genes (MEIS, PBC, KNOX, Iroquois, TGIF)
reveals a novel domain conserved
between plants and animals", Nucl.
Acids Res. (1997) 25(21): 4173-4180
doi:10.1093/nar/25.21.4173
http://nar.oxfordjournals.org/content/
25/21/4173.abstract

10. ^ Mukherjee, Krishanu, Luciano
Brocchieri, and Thomas R. Bürglin.
“A Comprehensive Classification and
Evolutionary Analysis of Plant Homeobox
Genes.” Molecular Biology and
Evolution 26.12 (2009): 2775
-2794. http://mbe.oxfordjournals.org/co
ntent/26/12/2775.short

11. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p425,434.
12. ^ William Bateson,
"Materials for the study of
variation: treated with especial
regard to discontinuity in the origin
of species", Macmillan and co., 1894
http://books.google.com/books?id=_HIZA
AAAYAAJ

13. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p425,434.
14. ^ Halder, G, P
Callaerts, and WJ Gehring. “Induction
of ectopic eyes by targeted expression
of the eyeless gene in Drosophila.”
Science 267.5205 (1995) : 1788 -1792.
http://www.sciencemag.org/citmgr?gca=s
ci;267/5205/1788

15. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p399.
16. ^ Ted Huntington.
17. ^ Jongmin
Nam, Claude W. dePamphilis, Hong Ma,
and Masatoshi Nei, "Antiquity and
Evolution of the MADS-Box Gene Family
Controlling Flower Development in
Plants", Mol Biol Evol (2003) 20(9):
1435-1447 first published online May
30, 2003 doi:10.1093/molbev/msg152
http://mbe.oxfordjournals.org/content/
20/9/1435.abstract
{1982 mybn (at
acrasid slime molds, before brown
algae}
18. ^ Mukherjee, Krishanu, Luciano
Brocchieri, and Thomas R. Bürglin.
“A Comprehensive Classification and
Evolutionary Analysis of Plant Homeobox
Genes.” Molecular Biology and
Evolution 26.12 (2009): 2775
-2794. http://mbe.oxfordjournals.org/co
ntent/26/12/2775.short
{1982 mybn (at
acrasid slime molds, before brown
algae}
19. ^ Ted Huntington. {1982 mybn (at
acrasid slime molds, before brown
algae}
20. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004) {same as sponge for Hox
800 mybn}
 
[1] {ULSF: Homeobox genes} Desajustes
en el modelo UNKNOWN
source: http://cnho.files.wordpress.com/
2010/07/hox_genes_illus.png


[2] {ULSF: Homeobox genes} UNKNOWN
source: http://cnho.files.wordpress.com/
2010/07/homeobox1.jpg

1,874,000,000 YBN
33
61)
FOOTNOTES
1. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
2. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
3. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
4. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
5. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
6. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
7. ^ Zhu Shixing
and Chen Huineng, "Megascopic
Multicellular Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China", Science , New Series, Vol. 270,
No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
8. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
9. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
10. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
11. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
12. ^ Zhu Shixing
and Chen Huineng, "Megascopic
Multicellular Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China", Science , New Series, Vol. 270,
No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
13. ^ Kumar S, "Megafossils from the
Mesoproterozoic Rohtas Formation (the
Vindhyan Supergroup), Katni area,
Central India." Precambrian Research.
v72, 1995, 171–184.
http://www.sciencedirect.com/science/a
rticle/pii/0301926894000856

14. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
15. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
16. ^ Zhu Shixing
and Chen Huineng, "Megascopic
Multicellular Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China", Science , New Series, Vol. 270,
No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
17. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
18. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
19. ^ Schneider
et al 2002. D.A. Schneider, M.E.
Bickford, W.F. Cannon, K.J. Schulz and
M.A. Hamilton, Age of volcanic rocks
and syndepositional iron formations,
Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
20. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
21. ^ Walter, M. R, Du, R. & Horodyski,
R. J., "Coiled carbonaceous megafossils
from the Middle Proterozoic of Jixian
(Tianjin) and Montana.", Am. J. Sei.
290A, 1990,
133-148. http://earth.geology.yale.edu/
~ajs/1990/11.1990.06SpecialWalter.pdf
{
Walter_Rulin_Horodyski_1990.pdf}
22. ^ Kumar, "Megafossils from the
Mesoproterozoic Rohtas Formation",
Precambrian Research, V72, 1995,
p171-184. {Kumar_Grypania_19940907_Gryp
ania_1000mybn.pdf}
23. ^ Kumar S, "Megafossils from the
Mesoproterozoic Rohtas Formation (the
Vindhyan Supergroup), Katni area,
Central India." Precambrian Research.
v72, 1995, 171–184.
http://www.sciencedirect.com/science/a
rticle/pii/0301926894000856

24. ^ A.H Knoll, E.J Javaux, D Hewitt,
and P Cohen, "Eukaryotic organisms in
Proterozoic oceans", Phil. Trans. R.
Soc. B June 29, 2006 361:1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/content/361/1
470/1023.full

25. ^ Kumar, "Megafossils from the
Mesoproterozoic Rohtas Formation",
Precambrian Research, V72, 1995,
p171-184. {Kumar_Grypania_19940907_Gryp
ania_1000mybn.pdf}
26. ^ Zhu Shixing and Chen Huineng,
"Megascopic Multicellular Organisms
from the 1700-Million-Year-Old
Tuanshanzi Formation in the Jixian
Area, North China", Science , New
Series, Vol. 270, No. 5236 (Oct. 27,
1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
27. ^ Ted Huntington.
28. ^ A.H Knoll, E.J Javaux,
D Hewitt, and P Cohen, "Eukaryotic
organisms in Proterozoic oceans", Phil.
Trans. R. Soc. B June 29, 2006
361:1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/content/361/1
470/1023.full

29. ^ A.H Knoll, E.J Javaux, D Hewitt,
and P Cohen, "Eukaryotic organisms in
Proterozoic oceans", Phil. Trans. R.
Soc. B June 29, 2006 361:1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/content/361/1
470/1023.full

30. ^ Ted Huntington.
31. ^ Han and Runnegar 1992.
T.-M. Han and B. Runnegar, Megascopic
eukaryotic algae from the
2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
32. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
33. ^ Schneider
et al 2002. D.A. Schneider, M.E.
Bickford, W.F. Cannon, K.J. Schulz and
M.A. Hamilton, Age of volcanic rocks
and syndepositional iron formations,
Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012. {1874
mybn}
(Banded Iron Formation) Michigan, USA31
32  

[1]
file:/root/web/Grypania_spiralis_wmel000
0.htm
source: file:/root/web/Grypania_spiralis
_wmel0000.htm


[2]
http://www.peripatus.gen.nz/paleontology
/lrgGrypaniaspiralis.jpg
source: http://www.peripatus.gen.nz/pale
ontology/lrgGrypaniaspiralis.jpg

1,870,000,000 YBN
2
151)
FOOTNOTES
1. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
2. ^ Russell F. Doolittle,
Da-Fei Feng, Simon Tsang, Glen Cho,
Elizabeth Little, "Determining
Divergence Times of the Major Kingdoms
of Living Organisms with a Protein
Clock", Science, (1996).
  
1,800,000,000 YBN
46) End of the Banded Iron Formation.6

FOOTNOTES
1. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
2. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
3. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005).
4. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
5. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
6. ^ Richard Cowen, "History
of Life", (Malden, MA: Blackwell,
2005).
 
[1] Ted Huntington PD
source: http://upload.wikimedia.org/wiki
pedia/commons/6/62/MichiganBIF.jpg


[2] Ted Huntington PD
source: Ted Huntington

1,700,000,000 YBN
12 13 14
6279) Earliest possible multicellular
brown algae (and Stramenopiles)
fossil.7 These fossils help support a
limit for multicellular algal fossil
(metaphyta) of at least 1700 million
years ago.8

If eukaryote these would be the
earliest eukaryote fossils with both
filamentous multicellularity and cell
differentiation and also the earliest
algae fossil with leaf structures.9

Knoll et al write in 2006 that:
"Examination of Tuanshanzi structures
in outcrop by one of us (A. H. Knoll)
suggests that the features in question
can alternatively be interpreted as
rare, fortuitously shaped fragments
deposited among many irregular mat
shards.".10
FOOTNOTES
1. ^ Zhu Shixing and Chen Huineng,
"Megascopic Multicellular Organisms
from the 1700-Million-Year-Old
Tuanshanzi Formation in the Jixian
Area, North China", Science , New
Series, Vol. 270, No. 5236 (Oct. 27,
1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
2. ^ Zhu Shixing and Chen Huineng,
"Megascopic Multicellular Organisms
from the 1700-Million-Year-Old
Tuanshanzi Formation in the Jixian
Area, North China", Science , New
Series, Vol. 270, No. 5236 (Oct. 27,
1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
3. ^ Ted Huntington.
4. ^ Zhu Shixing and Chen
Huineng, "Megascopic Multicellular
Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China", Science , New Series, Vol. 270,
No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
5. ^ Zhu Shixing and Chen Huineng,
"Megascopic Multicellular Organisms
from the 1700-Million-Year-Old
Tuanshanzi Formation in the Jixian
Area, North China", Science , New
Series, Vol. 270, No. 5236 (Oct. 27,
1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
6. ^ Ted Huntington.
7. ^ Zhu Shixing and Chen
Huineng, "Megascopic Multicellular
Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China", Science , New Series, Vol. 270,
No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
8. ^ Zhu Shixing and Chen Huineng,
"Megascopic Multicellular Organisms
from the 1700-Million-Year-Old
Tuanshanzi Formation in the Jixian
Area, North China", Science , New
Series, Vol. 270, No. 5236 (Oct. 27,
1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
9. ^ Ted Huntington.
10. ^ A.H Knoll, E.J Javaux, D
Hewitt, and P Cohen, "Eukaryotic
organisms in Proterozoic oceans", Phil.
Trans. R. Soc. B June 29, 2006
361:1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/content/361/1
470/1023.full

11. ^ Zhu Shixing and Chen Huineng,
"Megascopic Multicellular Organisms
from the 1700-Million-Year-Old
Tuanshanzi Formation in the Jixian
Area, North China", Science , New
Series, Vol. 270, No. 5236 (Oct. 27,
1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
12. ^ Zhu Shixing and Chen Huineng,
"Megascopic Multicellular Organisms
from the 1700-Million-Year-Old
Tuanshanzi Formation in the Jixian
Area, North China", Science , New
Series, Vol. 270, No. 5236 (Oct. 27,
1995), pp.
620-622. http://www.jstor.org/stable/28
88330
{Shixing_Huineng_19950331.pdf}
{Late Ordovician) 461-444 mybn}
13. ^
http://www.geosociety.org/science/timesc
ale/
{Late Ordovician) 461-444 mybn}
14. ^
Wayne L. Fry, An algal flora from the
upper ordovician of the Lake Winnipeg
region, Manitoba, Canada, Review of
Palaeobotany and Palynology, Volume 39,
Issues 3-4, August 1983, Pages 313-341,
ISSN 0034-6667,
10.1016/0034-6667(83)90018-0. (http://w
ww.sciencedirect.com/science/article/pii
/0034666783900180)
{Fry_Wayne_19821108.
pdf} {Late Ordovician) 461-444 mybn}

MORE INFO
[1]
http://www.ucmp.berkeley.edu/chromista/b
rowns/phaeofr.html

(Tuanshanzi Formation) Jixian Area,
North China11  

[1] Figure 4 from: Zhu Shixing and
Chen Huineng, ''Megascopic
Multicellular Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China'', Science , New Series, Vol.
270, No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330 {Shixing_Huineng_19950331.pdf} C
OPYRIGHTED
source: http://www.jstor.org/stable/2888
330


[2] Figure 3 from: Zhu Shixing and
Chen Huineng, ''Megascopic
Multicellular Organisms from the
1700-Million-Year-Old Tuanshanzi
Formation in the Jixian Area, North
China'', Science , New Series, Vol.
270, No. 5236 (Oct. 27, 1995), pp.
620-622. http://www.jstor.org/stable/28
88330 {Shixing_Huineng_19950331.pdf} C
OPYRIGHTED
source: http://www.jstor.org/stable/2888
330

1,584,000,000 YBN
2
152)
FOOTNOTES
1. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
2. ^ Russell F. Doolittle,
Da-Fei Feng, Simon Tsang, Glen Cho,
Elizabeth Little, "Determining
Divergence Times of the Major Kingdoms
of Living Organisms with a Protein
Clock", Science, (1996).
  
1,570,000,000 YBN
14 15
197)
FOOTNOTES
1. ^ Stechmann A, Cavalier-Smith T,
"The root of the eukaryote tree
pinpointed.", 2003, Curr. Biol. 13,
R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X

2. ^ Cédric Berney and Jan Pawlowski,
"A molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
3. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
4. ^ Stechmann
A, Cavalier-Smith T, "The root of the
eukaryote tree pinpointed.", 2003,
Curr. Biol. 13, R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X

5. ^ Cédric Berney and Jan Pawlowski,
"A molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
6. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
7. ^ Stechmann
A, Cavalier-Smith T, "The root of the
eukaryote tree pinpointed.", 2003,
Curr. Biol. 13, R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X

8. ^ Cédric Berney and Jan Pawlowski,
"A molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
9. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
10. ^ Ted
Huntington.
11. ^ Stechmann A, Cavalier-Smith T,
"The root of the eukaryote tree
pinpointed.", 2003, Curr. Biol. 13,
R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X

12. ^ Cédric Berney and Jan Pawlowski,
"A molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
13. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
14. ^ Cédric
Berney and Jan Pawlowski, "A molecular
time-scale for eukaryote evolution
recalibrated with the continuous
microfossil record", Proc. R. Soc. B
August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
{problem with 1250 my bangia red algae
fossils)1126 mybn}
15. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1570 mybn}

MORE INFO
[1] Thomas Cavalier-Smith, Ema
E.-Y. Chao, "Phylogeny of Choanozoa,
Apusozoa, and Other Protozoa and Early
Eukaryote Megaevolution", J Mol Evol
(2003) 56:540 563
[2] J Mol Evol (2003)
56:540 563 Phylogeny of Choanozoa,
Apusozoa, and Other Protozoa and Early
Eukaryote Megaevolution Thomas
Cavalier-Smith, Ema E.-Y. Chao
 
[1] Figure 1: Figure 1. Eukaryote
phylogeny integrating ultrastructure,
sequence trees, gene fusions and
molecular cladistic markers. The
unikont topology is established, but
the branching order of the six bikont
groups remains uncertain. The single
enslavement [12] of a red alga (R) to
create chromalveolates is supported by
a plastid glyceraldehyde phosphate
dehydrogenase (GAPDH) replacement [13].
Whether there was a single enslavement
of a green alga (G) to form cabozoa or
two separate enslavements (asterisks)
to form Cercozoa and Excavata is
uncertain [12], as is the position of
Heliozoa [14]. Polyubiquitin [15] and
EF-1α[16] insertions strongly support
the clades core Rhizaria and
opisthokonts. The inset shows the BamHI
restriction fragment from H.
cantabrigiensis that was sequenced and
analysed in this study, spanning the
DHFR and the amino terminus of the TS
gene (red, introns are green). The
length of the noncoding regions
upstream and downstream of the DHFR
gene from one of the clones is
indicated. Figure 1 from: Stechmann
A, Cavalier-Smith T, ''The root of the
eukaryote tree pinpointed.'', 2003,
Curr. Biol. 13, R665–R666.
doi:10.1016/S0960-9822(03)00602-X. http
://www.sciencedirect.com/science/article
/pii/S096098220300602X COPYRIGHTED
source: http://www.sciencedirect.com/sci
ence?_ob=MiamiCaptionURL&_method=retriev
e&_eid=1-s2.0-S096098220300602X&_image=1
-s2.0-S096098220300602X-gr1_lrg.jpg&_ba=
&_fmt=full&_orig=na&_issn=09609822&_pii=
S096098220300602X&_isHiQual=Y&_acct=C000
059600&_version=1&_urlVersion=0&_userid=
4422&md5=cec46b2161caca87740f4ff34545ab6
9


[2] cavalier-smith diagram COPYRIGHTED

source: cavalier_jmolevol_2003_56_540-56
3.pdf

1,520,000,000 YBN
71 72 73 74 75
202) Ribosomal RNA shows the Protist
Phylum Amoebozoa (also called
Ramicristates) which includes amoeba
and slime molds evolving now.

The Amoebozoa are a major group of
amoeboid protozoa, including the
majority that move by means of internal
cytoplasmic flow. Their pseudopodia are
characteristically blunt and
finger-like, called lobopodia. Most are
unicellular, and are common in soils
and aquatic habitats, with some found
as symbiotes of other organisms,
including several pathogens. The
Amoebozoa also include the slime
moulds, multinucleate or multicellular
forms that produce spores and are
usually visible to the unaided eye. 11


Mycetozoa are the slime molds.
4. Plasmodial
Slime Molds 12
a.
Plasmodial slime molds exist as a
plasmodium. (the earlier evolved
acrasid cellular slime molds exist as
individual amoeboid cells.)
b. This
diploid multinucleated cytoplasmic mass
creeps along, phagocytizing decaying
plant material.
c. Fan-shaped
plasmodium contains tubules of
concentrated cytoplasm in which
liquefied cytoplasm streams.
d.
Under unfavorable environmental
conditions (e.g., drought), the
plasmodium develops many sporangia

that produce spores by meiosis.
e.
When mature, spores are released and
survive until more favorable
environmental conditions return;

then each releases a haploid
flagellated cell or an amoeboid cell.

f. Two flagellated or amoeboid
cells fuse to form diploid zygote that
produces a multi-nucleated plasmodium.
13

Nuclear division in giant amoebas
(Peolobiont/Amoebozoa) is neither
mitosis nor binary fission, but
incorporates aspects of both (Fig.
3-7). Chromosomes are attached
permanently to the nuclear membrane by
their centromeres (MTOCs, microtubule
organizing centers), and the nuclear
membrane remains intact throughout
division. After DNA duplication
produces two chromatids, the point of
attachment, the MTOC duplicates or
divides, and microtubules are assembled
between the two resulting MTOCs.
Elongating microtubules form something
akin to a spindle within the nuclear
membrane that pushes the daughter
chromosomes apart and elongate the
membrane-bounded nucleus until it blebs
in half in something akin to binary
fission. Simple assembly of
microtubules accomplishes the
separation of daughter genomes in this
simple nuclear division. In typical
eukaryotic mitosis, the separation of
daughter chromosomes is accomplished by
a dual action, the disassembly of
spindle fibers connecting the daughter
chromosome to the polar MTOC, and
assembly of spindle fibers running pole
to pole. 14

Thomas Cavalier-Smith and Ema E. -Y.
Chao write: "Amoebozoa are a key
protozoan phylum because of the
possibility that they are ancestrally
uniciliate and unicentriolar
(Cavalier-Smith 2000a,b); present data
on the DHFR-TS gene fusion leaves open
the possibility that they might be the
earliest-diverging eukaryotes
(Stechmann and Cavalier-Smith 2002),
but they may be evolutionarily closer
to bikonts or even opisthokonts.
Amoebozoa comprise two subphyla
(Cavalier-Smith 1998a): Lobosa,
classical aerobic amoebae with broad
("lobose") pseudopods (including the
testate Arcellinida), and Conosa (slime
molds {Mycetozoa, e.g., Dictyostelium}
and amitochondrial-often
uniciliate-archamaebae {entamoebae,
mastigamoebae}). Contrary to early
analyses (Sogin 1991; Cavalier-Smith
1993a), there is no reason to regard
Amoebozoa as polyphyletic; the defects
of those classical uncorrected rRNA
trees are shown by trees using 123
proteins that robustly establish the
monophyly of both Archamoebae and
Conosa (Bapteste et al. 2002). Unless
the tree's root is within Conosa,
Dictyostelium and Entamoeba must have
evolved independently from aerobic
flagellates by ciliary losses. A recent
mitochondrial gene tree based on
concatenating six different proteins
grouped Dictyostelium with Physarum
(99% support) and both Mycetozoa as
sisters to Acanthamoeba (99% support),
thus providing strong evidence for the
monophyly of Mycetozoa and the grouping
of Lobosa and Conosa as Amoebozoa
(Forget et al. 2002)-the same tree also
strongly supports the idea based on
morphology that Allomyces should be
excluded from Chytridiomycetes (in the
separate class Allomycetes) and is
phylogenetically closer to zygomycetes
and higher fungi (Cavalier-Smith 1998a,
2000c). Furthermore, the derived gene
fusion between two cytochrome oxidase
genes, coxI and coxII (Lang et al.
1999), strongly supports the holophyly
of Mycetozoa. Since Archamoebae
secondarily lost mitochondria, the root
cannot lie among them either-although
anaerobiosis in Archamoebae is derived,
it is unjustified to conclude from this
that their simple ciliary root
organization, which was a key reason
for considering them early eukaryotes
(Cavalier-Smith 1991c), is also
secondarily derived (Edgcomb et al.
2002). Thus the root of the eukaryote
tree cannot lie within the Conosa.

As Mycetozoa and Archamoebae have very
long-branch rRNA sequences, Conosa were
excluded from the analysis in Fig. 1,
which includes only Lobosa. Although
the monophyly of Acanthamoebida (99%)
and of Euamoebida (85%) is well
supported, the basal branching of the
Lobosa is so poorly resolved that the
monophyly of Lobosa might appear open
to question. The four lobosan lineages
apparently diverged early. However, in
the 279- and 227-species trees, which
included Conosa, anaeromonads did not
intrude into the Amoebozoa as they do
in Fig. 1, and Amoebozoa were
monophyletic (low support) except for
the exclusion of M. invertens. M.
invertens is another wandering branch,
which in some taxon sample/methods
groups very weakly with other
Amoebozoa, but more often ends up in a
different place in each tree! We concur
with the judgment of Milyutina et al.
(2001)Edgcomb et al. (2002) that it
should not be regarded as a pelobiont
or Archamoeba, but as a lobosan that
independently became an anaerobe with
degenerate mitochondria. Its tendency
to drift around the tree, coupled with
its short branch, suggests that it may
be a particularly early-diverging
amoebozoan lineage. If so, its
unicentriolar condition would give
added support to the idea that
Amoebozoa are ancestrally uniciliate,
if it could be shown that Amoebozoa are
either holophyletic or not at the base
of the tree.

Most, if not all, amoebae evolved from
amoeboid zooflagellates by multiple
ciliary losses (Cavalier-Smith 2000a).
As the uniciliate condition is
widespread within Amoebozoa
(Cavalier-Smith 2000a, 2002b), it may
be their ancestral condition; if so,
ordinary nonciliate amoebozoan amoebae
arose several times independently.
Evolution of amoebae from
zooflagellates by ciliary loss also
occurred separately in Choanozoa to
produce Nuclearia and in several bikont
groups, notably Percolozoa
(heterolobosean amoebae, e.g.,
Vahlkampfia) and Cercozoa. However, we
cannot currently exclude the
possibility that the eukaryote tree is
rooted within the lobosan Amoebozoa, in
which case one of its nonciliate
lineages (Euamoebida or Vanellidae)
might be primitively nonciliate and the
earliest-diverging eukaryotic lineage.
However, as the idea that the nucleus
and a single centriole and cilium
coevolved in the ancestral eukaryote
(Cavalier-Smith 1987a) retains its
theoretical merits, we think it more
likely that all Amoebozoa are derived
from a uniciliate ancestor and that
crown Amoebozoa are a clade.".15

Amoebozoa vary greatly in size. Many
are only 10-20 μm in size, but they
also include many of the larger
protozoa. The famous species Amoeba
proteus may reach 800 μm in length,
and partly on account of its size is
often studied as a representative cell.
Multinucleate amoebae like Chaos and
Pelomyxa may be several millimetres in
length, and some slime moulds cover
several square feet. 16

The cell is typically divided into a
granular central mass, called
endoplasm, and a clear outer layer,
called ectoplasm. During locomotion the
endoplasm flows forwards and the
ectoplasm runs backwards along the
outside of the cell. Many amoebae move
with a definite anterior and posterior;
in essence the cell functions as a
single pseudopod. They usually produce
numerous clear projections called
subpseudopodia (or determinate
pseudopodia), which have a defined
length and are not directly involved in
locomotion. 17

Other amoebozoans may form multiple
indeterminate pseudopodia, which are
more or less tubular and are mostly
filled with granular endoplasm. The
cell mass flows into a leading
pseudopod, and the others ultimately
retract unless it changes direction.
Subpseudopodia are usually absent. In
addition to a few naked forms like
Amoeba and Chaos, this includes most
amoebae that produce shells. These may
be composed of organic materials, as in
Arcella, or of collected particles
cemented together, as in Difflugia,
with a single opening through which the
pseudopodia emerge. 18

The primary mode of nutrition is by
phagocytosis: the cell surrounds
potential food particles, sealing them
into vacuoles where the may be digested
and absorbed. Some amoebae have a
posterior bulb called a uroid, which
may serve to accumulate waste,
periodically detaching from the rest of
the cell. When food is scarce, most
species can form cysts, which may be
carried aerially and introduce them to
new environments. In slime moulds,
these structures are called spores, and
form on stalked structures called
fruiting bodies or sporangia. 19

Most Amoebozoa lack flagella and more
generally do not form
microtubule-supported structures except
during mitosis. However, flagella occur
among the pelobionts, and many slime
moulds produce biflagellate gametes.
The flagella is generally anchored by a
cone of microtubules, suggesting a
close relationship to the opisthokonts.
The mitochondria characteristically
have branching tubular cristae, but
have been lost among pelobionts and the
parasitic entamoebids, collectively
referred to as archamoebae based on the
earlier assumption that the absence was
primitive. 20

Traditionally all amoebae with lobose
pseudopods were treated together as the
Lobosea, placed with other amoeboids in
the phylum Sarcodina or Rhizopoda, but
these were considered to be unnatural
groups. Structural and genetic studies
identified several independent groups:
the percolozoans, pelobionts, and
entamoebids. In phylogenies based on
rRNA their representatives were
separate from other amoebae, and
appeared to diverge near the base of
eukaryotic evolution, as did most slime
molds. 21

However, revised trees by
Cavalier-Smith and Chao in 1996
suggested that the remaining lobosans
do form a monophyletic group, and that
the archamoebae and Mycetozoa are
closely related to it, although the
percolozoans are not. Subsequently they
emended (to improve by editing22 ) the
older phylum Amoebozoa to refer to this
supergroup. Studies based on other
genes have provided strong support for
the unity of this group. Patterson
treated most with the testate filose
amoebae as the ramicristates, based on
mitochondrial similarities, but the
latter are now removed to the Cercozoa.
23

Amoebae are difficult to classify, and
relationships within the phylum remain
confused. Originally it was divided
into the subphyla Conosa, comprising
the archamoebae and Mycetozoa, and
Lobosa, including the more typical
lobose amoebae. Molecular phylogenies
provide some support for this division
if the Lobosa are understood to be
paraphyletic. They also suggest the
morphological families of naked
lobosans may correspond at least partly
to natural groups: 24

* Leptomyxida
* Amoebidae
* Hartmannellidae
* Paramoebidae
*
Vannellidae
* Vexilliferidae
* Acanthamoebidae
* Stereomyxidae 25

However, many amoebae have not yet been
studied via molecular techniques,
including all those that produce shells
(Arcellinida). 26

PHYLUM Amoebozoa (Lühe, 1913 emend.)
27 28 Cavalier-Smith, 1998 29

CLASS Breviatea 30
CLASS
Variosea 31
CLASS Phalansterea
(T. Cavalier-Smith, 2000) 32

SUBPHYLUM Lobosa (Carpenter, 1861)
Cavalier-Smith, 1997 33 (lobose
amoebas)
CLASS Amoebaea 34
CLASS
Testacealobosea 35 (includes shelled
lobosid amebas {testate amoebas})
CLASS
Holomastigea T. Cavalier-Smith, 1997
("1996-1997") 36
SUBPHYLUM Conosa
(Cavalier-Smith, 1998) 37

INTRAPHYLUM Mycetozoa (De Bary, 1859)
Cavalier-Smith, 1998 38 (Slime Molds)

SUPERCLASS Eumyxa (Cavalier-Smith,
1993) Cavalier-Smith, 1998
CLASS
Protostelea (C.J. Alexopoulos & C.W.
Mims, 1979 orthog. emend.) 39

CLASS Myxogastrea (E.M. Fries, 1829
stat. nov. J. Feltgen, 1889 orthog.
emend.) 40 (plasmodial slime molds)

SUPERCLASS Dictyostelia (Lister, 1909)
Cavalier-Smith, 1998
CLASS
Dictyostelea™ (D.L. Hawksworth et
al., 1983, orthog. emend.) 41

INTRAPHYLUM Archamoebae
(Cavalier-Smith, 1983) Cavalier-Smith,
1998
CLASS Pelobiontea (F.C. Page,
1976 stat. nov. T. Cavalier-Smith,
1981) 42
CLASS Entamoebea (T.
Cavalier-Smith, 1991) 43

SUBPHYLUM Lobosa


SUBPHYLUM Conosa
The Conosea unifies amoebae
which usually possess flagellate stages
or are amoeboflagellates. This clade
consists of two relatively solid groups
� the Mycetozoa and Archamoebae,
grouped by Cavalier-Smith (1998) in the
taxon Conosa, as well as a number of
independent lineages, including two
flagellates � Phalansterium
(Cavalier-Smith et al. 2004) and
Multicilia (Nikolaev et al. 2004), and
two gymnamoebae � Gephyramoeba and
Filamoeba (Amaral Zettler et al. 2000).
Because of large variations of the
substitution rates in SSU rRNA genes
within this clade, its internal
relationships are not resolved yet. 44


The Mycetozoa comprises two distinct
groups of "slime molds", the
Myxogastria and Protostelia (Dykstra
and Keller 2000). This is a
well-defined group of protists,
characterized by the ability to form
so-called "fruiting bodies". In some
lineages of Mycetozoa the fruiting body
is raised over the substratum on a
distinct stalk. Both groups possess
complex life cycles including an
aggregation of cells, however the
essential difference between them is
that in Protostelia, only a
pseudoplasmodium is formed (without
fusion of the cells constituting the
aggregate), while in Myxogastria a true
plasmodium is formed (the cells
completely fuse, forming a single
organism) (Olive 1975; Dykstra and
Keller 2000). The monophyly of
Mycetozoa was proposed based on
elongation factor 1-alpha gene
sequences (Baldauf and Doolittle 1997)
but it is not always recovered in SSU
rRNA trees (Cavalier-Smith et al. 2004;
Nikolaev et al. 2004).45

The Archamoebae comprise amoeboid and
amoeboflagellate protists characterized
by a secondary absence of mitochondria
(mostly due to parasitism or life in
anoxic environments). This group
includes the free-living genera
Mastigamoeba, Mastigella, and Pelomyxa
(the pelobionts) and the parasitic
genera Entamoeba and Endolimax (the
entamoebids). The consistent grouping
of all these amitochondriate amoeboid
organisms in both SSU rRNA and actin
gene phylogenies (Fahrni et al. 2003)
suggests a single loss of the
mitochondria during the evolution of
Amoebozoa. 46

CLASS Amoebaea
ORDER Euamoebida Lepsi, 1960 47

FAMILY Amoebidae (Ehrenberg 1838)
48
The Amoebidae are a family of
amoebozoa, including naked amoebae that
produce multiple pseudopodia of
indeterminate length. These are roughly
cylindrical in form, with a central
stream of granular endoplasm, and do
not have subpseudopodia. During
locomotion one pseudopod typically
becomes dominant, and the others are
retracted as the body flows into it. In
some cases the cell moves by "walking",
with the relatively permanent
pseudopodia serving as limbs. 49

The most important genera are Amoeba
and Chaos, which are set apart from the
others by longitudinal ridges. They
group together on molecular trees,
suggesting the Amoebidae are a natural
group. Shelled amoebozoans have not
been studied molecularly but produce
very similar pseudopodia, so although
they are traditionally classified
separately they may be closely related
to this group. 50

GENUS Amoeba (Bery de St. Vincent 1822)
51
Amoeba (also spelled ameba) is a
genus of protozoa that moves by means
of temporary projections called
pseudopods, and is well-known as a
representative unicellular organism.
The word amoeba is variously used to
refer to it and its close relatives,
now grouped as the Amoebozoa, or to all
protozoa that move using pseudopods,
otherwise termed amoeboids. 52

Amoeba itself is found in freshwater,
typically on decaying vegetation from
streams, but is not especially common
in nature. However, because of the ease
with which they may be obtained and
kept in the lab, they are common
objects of study, both as
representative protozoa and to
demonstrate cell structure and
function. The cells have several lobose
pseudopods, with one large tubular
pseudopod at the anterior and several
secondary ones branching to the sides.
The most famous species, Amoeba
proteus, is 700-800 μm in length, but
many others are much smaller. Each has
a single nucleus, and a simple
contractile vacuole which maintains its
osmotic pressure, as its most
recognizable features. 53

Early naturalists referred to Amoeba as
the Proteus animalcule, after a Greek
god who could change his shape. The
name "amibe" was given to it by Bery
St. Vincent, from the Greek amoibe,
meaning change. 54

A good method of collecting amoeba is
to lower a jar upside down until it is
just above the sediment surface. Then
one should slowly let the air escape so
the top layer will be sucked into the
jar. Deeper sediment should not be
allowed to get sucked in. It is
possible to slowly move the jar when
tilting it to collect from a larger
area. If no amoeba are found, one can
try introducing some rice grains into
the jar and waiting for them to start
to rot. The bacteria eating the rice
will be eaten by the amoeba, thus
increasing the population and making
them easier to find. 55

Family Hartmannellidae (Volkonsky
1931)
The Hartmannellidae are a common family
of amoebozoa, usually found in soils.
When active they tend to be roughly
cylindrical in shape, with a single
leading pseudopod and no
subpseudopodia. This form somewhat
resembles a slug, and as such they are
also called limax amoebae. Trees based
on rRNA show the Hartmannellidae are
paraphyletic to the Amoebidae and
Leptomyxida, which may adopt similar
forms. 56

FAMILY Vannellidae (Bovee 1970)
The
Vannellidae are a distinctive family of
amoebozoa. During locomotion they tend
to be flattened and fan-shaped,
although some are long and narrow, and
have a prominent clear margin at the
anterior. In most amoebae, the
endoplasm glides forwards through the
center of the cell, but in vannellids
the cell undergoes a sort of rolling
motion, with the outer membrane sliding
around like a tank tread. 57

These amoebae are usually 10-40 μm in
size, but some are smaller or larger.
The most common genus is Vannella,
found mainly in soils, but also in
freshwater and marine habitats. Trees
based on rRNA support the monophyly of
the family. 58

SUBPHYLUM Conosa Cavalier-Smith, 1998

INTRAPHYLUM Archamoebae
(Cavalier-Smith, 1983) Cavalier-Smith,
1998
CLASS Pelobiontea F.C. Page, 1976
stat. nov. T. Cavalier-Smith, 1981

ORDER Pelobiontida (Page 1976)
The pelobionts
are a small group of amoebozoa. The
most notable member is Pelomyxa, a
giant amoeba with multiple nuclei and
inconspicuous non-motile flagella. The
other genera, called mastigamoebae, are
often uninucleate, have a single
anterior flagellum used in swimming,
and produce numerous determinate
pseudopodia. 59

Pelobionts are closely related to the
entamoebids and like them have no
mitochondria; in addition, pelobionts
also do not have dictyosomes. At one
point these absences were considered
primitive. However, molecular trees
place the two groups with other lobose
amoebae in the phylum Amoebozoa, so
these are secondary losses. 60

SUBPHYLUM Conosa Cavalier-Smith, 1998

INTRAPHYLUM Archamoebae
(Cavalier-Smith, 1983) Cavalier-Smith,
1998
CLASS Entamoebea T. Cavalier-Smith,
1991
The entamoebids or entamoebae are a
group of amoebozoa found as internal
parasites or commensals of animals. The
cells are uninucleate small, typically
10-100 μm across, and usually have a
single lobose pseudopod taking the form
of a clear anterior bulge. There are
two major genera, Entamoeba and
Endolimax. They include several species
that are pathogenic in humans, most
notably Entamoeba histolytica, which
causes amoebic dysentery. 61

Entamoebids lack mitochondria. This is
a secondary loss, possibly associated
with their parasitic life-cycle.
Studies show they are close relatives
of the pelobionts, another group of
amitochondriate amoebae, but unlike
them entamoebids retain dictyosomes.
Both groups are now placed alongside
other lobose amoebae in the phylum
Amoebozoa. 62

Studying Entamoeba invadens, David
Biron of the Weizmann Institute of
Science and coworkers found that about
one third of the cells are unable to
separate unaided and recruit a
neighboring amoeba (dubbed the
"midwife") to complete the fission. He
writes: 63

"When an amoeba divides, the two
daughter cells stay attached by a
tubular tether which remains intact
unless mechanically severed. If called
upon, the neighbouring amoeba midwife
travels up to 200 μm towards the
dividing amoeba, usually advancing in a
straight trajectory with an average
velocity of about 0.5 μm/s. The
midwife then proceeds to rupture the
connection, after which all three
amoebae move on." 64

They also reported a similar behavior
in Dictyostelium. 65

Entamoeba coli is a non-pathogenic
species of entamoebid that is important
clinically in humans only because it
can be confused with Entamoeba
histolytica, which is pathogenic, on
microscopic examination of stained
stool specimens. A simple finding of
Entamoeba coli trophozoites or cysts in
a stool specimen requires no treatment.
66

Entamoeba histolytica is an anaerobic
parasitic protozoan, classified as an
entamoebid. It infects predominantly
humans and other primates. Diverse
mammals such as dogs and cats can
become infected but usually do not shed
cysts (the environmental survival form
of the organism) with their feces, thus
do not contribute significantly to
transmission. The active (trophozoite)
stage exists only in the host and in
fresh feces; cysts survive outside the
host in water and soils and on foods,
especially under moist conditions on
the latter. When swallowed they cause
infections by excysting (to the
trophozoite stage) in the digestive
tract. 67

Endolimax nana, a small entamoebid that
is a commensal of the human intestine,
causes no known disease. It is most
significant in medicine because it can
provide false positives for other
tests, such as for the related species
Entamoeba histolytica which causes
amoebic dysentery, and because its
presence indicates that the host once
consumed feces. It forms cysts with
four nuclei which excyst in the body
and become trophozoites. Endolimax nana
nuclei have a large endosome somewhat
off-center and small amounts of visible
chromatin or none at all. 68

Actinopod reproduction may involve
binary fission or the formation of
swarmer cells, and sexual processes
occur in some groups. Their
mitochondrial cristae are usually
tubular, but in some groups there are
vesicular or flattened, plate-like
cristae.69

(Are amoeba haplodiploid?70 )
FOOTNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p515.
4. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
5. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p515.
7. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004), p515.
8. ^
"Amoebozoa". Wikipedia. Wikipedia,
2008.
http://en.wikipedia.org/wiki/Amoebozoa
9. ^ "Amoebozoa". Wikipedia. Wikipedia,
2008.
http://en.wikipedia.org/wiki/Amoebozoa
10. ^
http://www.unige.ch/sciences/biologie/bi
ani/msg/Amoeboids/Amoebozoa/Conosea.html

11. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
12. ^
http://www.sirinet.net/~jgjohnso/apbio30
.html

13. ^
http://www.sirinet.net/~jgjohnso/apbio30
.html

14. ^
http://www.bio.ilstu.edu/Armstrong/sylla
bi/222book/Chapt%203.htm

15. ^ Thomas Cavalier-Smith and Ema E.
-Y. Chao, "Phylogeny of Choanozoa,
Apusozoa, and Other Protozoa and Early
Eukaryote Megaevolution", Springer New
York, (2003) .
16. ^ "Amoebozoa".
Wikipedia. Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
17. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
18. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
19. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
20. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
21. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
22. ^ Ted Huntington.
23. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
24. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
25. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
26. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
27. ^ "Amoebozoa". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebozoa
28. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

29. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

30. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

31. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

32. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

33. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

34. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

35. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

36. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

37. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

38. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

39. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

40. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

41. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

42. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

43. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

44. ^
http://www.unige.ch/sciences/biologie/bi
ani/msg/Amoeboids/Amoebozoa/Conosea.html

45. ^
http://www.unige.ch/sciences/biologie/bi
ani/msg/Amoeboids/Amoebozoa/Conosea.html

46. ^
http://www.unige.ch/sciences/biologie/bi
ani/msg/Amoeboids/Amoebozoa/Conosea.html

47. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=75925

48. ^ "Amoebidae". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebidae
49. ^ "Amoebidae". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebidae
50. ^ "Amoebidae". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Amoebidae
51. ^ "Amoeba". Wikipedia. Wikipedia,
2008.
http://en.wikipedia.org/wiki/Amoeba
52. ^ "Amoeba". Wikipedia. Wikipedia,
2008.
http://en.wikipedia.org/wiki/Amoeba
53. ^ "Amoeba". Wikipedia. Wikipedia,
2008.
http://en.wikipedia.org/wiki/Amoeba
54. ^ "Amoeba". Wikipedia. Wikipedia,
2008.
http://en.wikipedia.org/wiki/Amoeba
55. ^ "Amoeba". Wikipedia. Wikipedia,
2008.
http://en.wikipedia.org/wiki/Amoeba
56. ^ "Hartmannellidae". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Hartmannell
idae

57. ^ "Vannellidae". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Vannellidae

58. ^ "Vannellidae". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Vannellidae

59. ^ "Pelobiont". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Pelobiont
60. ^ "Pelobiont". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Pelobiont
61. ^ "Entamoebid". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Entamoebid
62. ^ "Entamoebid". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Entamoebid
63. ^ "Entamoebid". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Entamoebid
64. ^ "Entamoebid". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Entamoebid
65. ^ "Entamoebid". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Entamoebid
66. ^ "Entamoeba coli". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Entamoeba_c
oli

67. ^ "Entamoeba histolytica".
Wikipedia. Wikipedia, 2008.
http://en.wikipedia.org/wiki/Entamoeba_h
istolytica

68. ^ "Endolimax nana". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Endolimax_n
ana

69. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989). p174
70. ^ Ted
Huntington.
71. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1520
mybn}
72. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120. {1400 my}
73.
^ S Blair Hedges, Jaime E Blair, Maria
L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1587mybn)
74. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (c1400) {c1220}
75. ^ Cédric
Berney and Jan Pawlowski, "A molecular
time-scale for eukaryote evolution
recalibrated with the continuous
microfossil record", Proc. R. Soc. B
August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{c1090}
 
[1] SUBPHYLUM Lobosa CLASS Amoebaea
Chaos diffluens, an amoeba. Photo
released by Dr. Ralf Wagner.
source: http://en.wikipedia.org/wiki/Ima
ge:Chaos_diffluens.jpg


[2] CLASS Amoebaea Mayorella (may-or
-ell-a) a medium sized free-living
naked amoeba with conical pseudopodia.
Central body is the nucleus. Phase
contrast. This picture was taken by
David Patterson of material from
Limulus-ridden sediments at Plum Island
(Massachusetts USA) in spring and
summer, 2001. NONCOMMERCIAL USE
source: http://microscope.mbl.edu/script
s/microscope.php?func=imgDetail&imageID=
515

1,400,000,000 YBN
26 27 28
173) Earliest probable fungi
microfossils, "Tappania plana".15 16 17
18 19 20 If true this would be the
oldest eukaryote fossil.21

Neoproterozoic fossils of Tappania from
the Neoproterozoic (800-900 MY) have
fused branches, a process found in
higher fungi.22 23
FOOTNOTES
1. ^ Javaux, Emmanuelle J., Andrew H.
Knoll, and Malcolm R. Walter.
“Morphological and Ecological
Complexity in Early Eukaryotic
Ecosystems.” Nature 412.6842 (2001):
66–69.
http://www.nature.com/nature/journal/v
412/n6842/abs/412066a0.html

2. ^ JAVAUX, EMMANUELLE J., ANDREW H.
KNOLL, and MALCOLM R. WALTER. “TEM
Evidence for Eukaryotic Diversity in
mid-Proterozoic Oceans.” Geobiology
2.3 (2004):
121–132. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1472-4677.2004.00027.x/
full

3. ^ Andrew Knoll, "Life on a Young
Planet: The first 3 Billion Years",
(Princeton, NJ: , 2003).
4. ^ Nicholas J.
Butterfield, "Probable Proterozoic
Fungi", Paleobiology , Vol. 31, No. 1
(Winter, 2005), pp.
165-182. http://www.jstor.org/stable/40
96990

5. ^ Nicholas J. Butterfield, "Probable
Proterozoic Fungi", Paleobiology , Vol.
31, No. 1 (Winter, 2005), pp.
165-182. http://www.jstor.org/stable/40
96990

6. ^ “Primordial Fungus.” Science
307.5707 (2005):
204. http://www.sciencemag.org/content/
307/5707/204.3.full?sid=46719958-9997-4c
91-bb89-5a8d33883c98

7. ^ Nicholas J. Butterfield, "Probable
Proterozoic Fungi", Paleobiology , Vol.
31, No. 1 (Winter, 2005), pp.
165-182. http://www.jstor.org/stable/40
96990

8. ^ Javaux, Emmanuelle J., Andrew H.
Knoll, and Malcolm R. Walter.
“Morphological and Ecological
Complexity in Early Eukaryotic
Ecosystems.” Nature 412.6842 (2001):
66–69.
http://www.nature.com/nature/journal/v
412/n6842/abs/412066a0.html

9. ^ JAVAUX, EMMANUELLE J., ANDREW H.
KNOLL, and MALCOLM R. WALTER. “TEM
Evidence for Eukaryotic Diversity in
mid-Proterozoic Oceans.” Geobiology
2.3 (2004):
121–132. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1472-4677.2004.00027.x/
full

10. ^ Andrew Knoll, "Life on a Young
Planet: The first 3 Billion Years",
(Princeton, NJ: , 2003).
11. ^ Nicholas J.
Butterfield, "Probable Proterozoic
Fungi", Paleobiology , Vol. 31, No. 1
(Winter, 2005), pp.
165-182. http://www.jstor.org/stable/40
96990

12. ^ Nicholas J. Butterfield,
"Probable Proterozoic Fungi",
Paleobiology , Vol. 31, No. 1 (Winter,
2005), pp.
165-182. http://www.jstor.org/stable/40
96990

13. ^ “Primordial Fungus.” Science
307.5707 (2005):
204. http://www.sciencemag.org/content/
307/5707/204.3.full?sid=46719958-9997-4c
91-bb89-5a8d33883c98

14. ^ Nicholas J. Butterfield,
"Probable Proterozoic Fungi",
Paleobiology , Vol. 31, No. 1 (Winter,
2005), pp.
165-182. http://www.jstor.org/stable/40
96990

15. ^ Javaux, Emmanuelle J., Andrew H.
Knoll, and Malcolm R. Walter.
“Morphological and Ecological
Complexity in Early Eukaryotic
Ecosystems.” Nature 412.6842 (2001):
66–69.
http://www.nature.com/nature/journal/v
412/n6842/abs/412066a0.html

16. ^ JAVAUX, EMMANUELLE J., ANDREW H.
KNOLL, and MALCOLM R. WALTER. “TEM
Evidence for Eukaryotic Diversity in
mid-Proterozoic Oceans.” Geobiology
2.3 (2004):
121–132. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1472-4677.2004.00027.x/
full

17. ^ Andrew Knoll, "Life on a Young
Planet: The first 3 Billion Years",
(Princeton, NJ: , 2003).
18. ^ Nicholas J.
Butterfield, "Probable Proterozoic
Fungi", Paleobiology , Vol. 31, No. 1
(Winter, 2005), pp.
165-182. http://www.jstor.org/stable/40
96990

19. ^ Nicholas J. Butterfield,
"Probable Proterozoic Fungi",
Paleobiology , Vol. 31, No. 1 (Winter,
2005), pp.
165-182. http://www.jstor.org/stable/40
96990

20. ^ “Primordial Fungus.” Science
307.5707 (2005):
204. http://www.sciencemag.org/content/
307/5707/204.3.full?sid=46719958-9997-4c
91-bb89-5a8d33883c98

21. ^ Nicholas J. Butterfield,
"Probable Proterozoic Fungi",
Paleobiology , Vol. 31, No. 1 (Winter,
2005), pp.
165-182. http://www.jstor.org/stable/40
96990

22. ^ Nicholas J. Butterfield,
"Probable Proterozoic Fungi",
Paleobiology , Vol. 31, No. 1 (Winter,
2005), pp.
165-182. http://www.jstor.org/stable/40
96990

23. ^ “Primordial Fungus.” Science
307.5707 (2005):
204. http://www.sciencemag.org/content/
307/5707/204.3.full?sid=46719958-9997-4c
91-bb89-5a8d33883c98

24. ^ Javaux, Emmanuelle J., Andrew H.
Knoll, and Malcolm R. Walter.
“Morphological and Ecological
Complexity in Early Eukaryotic
Ecosystems.” Nature 412.6842 (2001):
66–69.
http://www.nature.com/nature/journal/v
412/n6842/abs/412066a0.html

25. ^ JAVAUX, EMMANUELLE J., ANDREW H.
KNOLL, and MALCOLM R. WALTER. “TEM
Evidence for Eukaryotic Diversity in
mid-Proterozoic Oceans.” Geobiology
2.3 (2004):
121–132. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1472-4677.2004.00027.x/
full

26. ^ Javaux, Emmanuelle J., Andrew H.
Knoll, and Malcolm R. Walter.
“Morphological and Ecological
Complexity in Early Eukaryotic
Ecosystems.” Nature 412.6842 (2001):
66–69.
http://www.nature.com/nature/journal/v
412/n6842/abs/412066a0.html

27. ^ JAVAUX, EMMANUELLE J., ANDREW H.
KNOLL, and MALCOLM R. WALTER. “TEM
Evidence for Eukaryotic Diversity in
mid-Proterozoic Oceans.” Geobiology
2.3 (2004):
121–132. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1472-4677.2004.00027.x/
full

28. ^ Nicholas J. Butterfield,
"Probable Proterozoic Fungi",
Paleobiology , Vol. 31, No. 1 (Winter,
2005), pp.
165-182. http://www.jstor.org/stable/40
96990

(Roper Group) Northern Australia24 25
 

[1] a, c, Tappania plana, showing
asymmetrically distributed processes
and bulbous protrusions (arrow in a).
b, detail of a, showing dichotomously
branching process. d, Valeria
lophostriata. e, Dictyosphaera sp. f,
Satka favosa. The scale bar in a is 35
m for a and c; 10 m for b; 100 m for d;
15 m for e; and 40 m for f. Figure 1
from: Javaux, Emmanuelle J., Andrew H.
Knoll, and Malcolm R. Walter.
“Morphological and Ecological
Complexity in Early Eukaryotic
Ecosystems.” Nature 412.6842 (2001):
66–69.
http://www.nature.com/nature/journal/v
412/n6842/abs/412066a0.html
COPYRIGHTED
source: http://www.nature.com/nature/jou
rnal/v412/n6842/images/412066aa.2.jpg


[2] Figure 2 from: JAVAUX, EMMANUELLE
J., ANDREW H. KNOLL, and MALCOLM R.
WALTER. “TEM Evidence for Eukaryotic
Diversity in mid-Proterozoic Oceans.”
Geobiology 2.3 (2004):
121–132. http://onlinelibrary.wiley.c
om/doi/10.1111/j.1472-4677.2004.00027.x/
full COPYRIGHTED
source: http://onlinelibrary.wiley.com/s
tore/10.1111/j.1472-4677.2004.00027.x/as
set/image_n/GBI_027_f2.gif?v=1&t=gyteims
d&s=6988e942a6736a4fd4f748f2cefcc1acfbd2
ea74

1,380,000,000 YBN
15 16 17 18
220) Protists Opisthokonts (ancestor of
Fungi, Choanoflagellates and
Animals).12 13 Mitochondria with
flattened christae.14
FOOTNOTES
1. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
2. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php

3. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
4. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php

5. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

6. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
7. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php

8. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

9. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
10. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php

11. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

12. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
13. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php

14. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

15. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1380
mybn}
16. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120. {1400mybn}
17. ^ S.
Blair Hedges and Sudhir Kumar, "The
TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1600 mybn}
18. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{960 mybn}
 
[1] Parasite spore, SEM Z115/0073
Rights Managed Credit: EYE OF
SCIENCE/SCIENCE PHOTO
LIBRARY Caption: Parasite spore.
Coloured scanning electron micrograph
(SEM) of a microsporidian (Tubulinosema
ratisbonensis) spore cultured on human
lung fibroblast cells (brown).
Microsporidia are single-celled
parasites. T. ratisbonenesis is a
parasite of the fruit fly (Drosophila
melanogaster), but may also be able to
infect humans with weakened immune
systems. The spore is the infective
phase of the life cycle. It is excreted
by the old host and enters the gut of a
new host. The contents of the spore,
the sporoplasm, is injected into the
host's cell via the polar tubule. Once
in the cell the organism divides many
times with the resultant organisms
producing more spores. Magnification:
x10,000 at 10 centimetres
wide. Release details: Model and
property releases are not available
UNKNOWN
source: http://www.sciencephoto.com/imag
e/365473/large/Z1150073-Parasite_spore,_
SEM-SPL.jpg


[2] Parasite spore, SEM Z115/0073
Rights Managed Credit: EYE OF
SCIENCE/SCIENCE PHOTO
LIBRARY Caption: Parasite spore.
Coloured scanning electron micrograph
(SEM) of a microsporidian (Tubulinosema
ratisbonensis) spore cultured on human
lung fibroblast cells (brown).
Microsporidia are single-celled
parasites. T. ratisbonenesis is a
parasite of the fruit fly (Drosophila
melanogaster), but may also be able to
infect humans with weakened immune
systems. The spore is the infective
phase of the life cycle. It is excreted
by the old host and enters the gut of a
new host. The contents of the spore,
the sporoplasm, is injected into the
host's cell via the polar tubule. Once
in the cell the organism divides many
times with the resultant organisms
producing more spores. Magnification:
x10,000 at 10 centimetres
wide. Release details: Model and
property releases are not available
UNKNOWN
source: http://www.sciencephoto.com/imag
e/365473/large/Z1150073-Parasite_spore,_
SEM-SPL.jpg

1,300,000,000 YBN
22 23 24 25 26
38)
FOOTNOTES
1. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
2. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
3. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
4. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
5. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
6. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
7. ^ Schneider et al 2002. D.A.
Schneider, M.E. Bickford, W.F. Cannon,
K.J. Schulz and M.A. Hamilton, Age of
volcanic rocks and syndepositional iron
formations, Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012.
8. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf
9. ^ Knoll, Andrew H. “The Multiple
Origins of Complex Multicellularity.”
Annu. Rev. Earth Planet. Sci. 39.1
(2011):
217-239. http://www.annualreviews.org/d
oi/abs/10.1146/annurev.earth.031208.1002
09

10. ^ Inaki Ruiz-Trillo, Gertraud
Burger, Peter W.H. Holland, Nicole
King, B. Franz Lang, Andrew J. Roger,
Michael W. Gray, The origins of
multicellularity: a multi-taxon genome
initiative, Trends in Genetics, Volume
23, Issue 3, March 2007, Pages 113-118,
ISSN 0168-9525, DOI:
10.1016/j.tig.2007.01.005. (http://www.
sciencedirect.com/science/article/pii/S0
168952507000236)

11. ^ Nicholas H. Barton, "Evolution",
2007,
p225-226. http://books.google.com/books
?id=mMDFQ32oMI8C&pg=PA225

12. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p497-506.
13. ^ Michael Sleigh,
"Protozoa and Other Protists", (London;
New York: Edward Arnold, 1989).
14. ^
http://www.nature.com/cgi-taf/DynaPage.t
af?file=/nature/journal/v391/n6667/full/
391553a0_fs.html

15. ^ Ted Huntington.
16. ^ Ted Huntington.
17. ^ Ted
Huntington.
18. ^ A.H Knoll, E.J Javaux, D Hewitt,
and P Cohen, "Eukaryotic organisms in
Proterozoic oceans", Phil. Trans. R.
Soc. B June 29, 2006 361:1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/content/361/1
470/1023.full

19. ^ Kumar, "Megafossils from the
Mesoproterozoic Rohtas Formation",
Precambrian Research, V72, 1995,
p171-184. {Kumar_Grypania_19940907_Gryp
ania_1000mybn.pdf}
20. ^ Ted Huntington.
21. ^ Butterfield N. J. A. H.
Knoll K. Swett, "A bangiophyte red alga
from the Proterozoic of Arctic
Canada.", Science 1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

22. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
23. ^ Butterfield N. J. A. H.
Knoll K. Swett, "A bangiophyte red alga
from the Proterozoic of Arctic
Canada.", Science 1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905
{Bangia) 1250 mybn}
24. ^ Schneider et
al 2002. D.A. Schneider, M.E. Bickford,
W.F. Cannon, K.J. Schulz and M.A.
Hamilton, Age of volcanic rocks and
syndepositional iron formations,
Marquette Range Supergroup;
implications for the tectonic setting
of Paleoproterozoic iron formations of
the Lake Superior region. Can. J. Earth
Sci. 39 6 (2002), pp. 999-1012. {1874
mybn} {Grypania)1874 mybn}
25. ^ Han and
Runnegar 1992. T.-M. Han and B.
Runnegar, Megascopic eukaryotic algae
from the 2.1-billion-year-old Negaunee
Iron-Formation, Michigan. Science 257
(1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf {1874 mybn} {Grypania)1874
mybn}
26. ^ Campbell, Reece, et al,
"Biology", Eigth Edition, 2009, p517.

MORE INFO
[1] Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-506.
(c850my)
[2] S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1351my)
[3] Ted huntington, Estimate based on
origin of brown algae around
1,973,000,000
(earlest red alga fossils:) (Hunting
Formation) Somerset Island, arctic
Canada21  

[1] Bodanella (bow-dan-ell-a)
lauterbornii, a branching filamentous
brown alga. Nearly all brown algae are
marine organisms, but this species is
found in the bottoms of freshwater
lakes. Bright field. data on this
strain. This image is of material
from Provasoli-Guillard National Center
for Culture of Marine Phytoplankton,
images taken by David Patterson and Bob
Andersen. Image copyright: Bob Andersen
and D. J. Patterson, image used under
license to MBL
(micro*scope). NONCOMMERCIAL USE ONLY
source: http://starcentral.mbl.edu/msr/r
awdata/files/bodonella_bgz.zip


[2] Bodanella (bow-dan-ell-a)
lauterbornii, a branching filamentous
brown alga. Nearly all brown algae are
marine organisms, but this species is
found in the bottoms of freshwater
lakes. Bright field. data on this
strain. This image is of material
from Provasoli-Guillard National Center
for Culture of Marine Phytoplankton,
images taken by David Patterson and Bob
Andersen. Image copyright: Bob Andersen
and D. J. Patterson, image used under
license to MBL
(micro*scope). NONCOMMERCIAL USE ONLY
source: http://starcentral.mbl.edu/msr/r
awdata/viewable/bodonella_bgw.jpg

1,300,000,000 YBN
22 23 24 25 26
67) First "plastids". Cyanobacteria
form plastids (chloroplasts) through
symbiosis, within a eukaryote cell
(endosymbiosis). Like mitochondria,
these organelles copy themselves and
are not made by the cell DNA.14

Chloroplasts use their green pigment to
trap light particles to synthesize
carbon compounds from carbon dioxide
and water supplied by the host plant.15


This is a primary plastid
endosymbiosis, and genetic analysis
supports the theory that all green
plants, which are eukaryotes with
double membrane plastids, are descended
from a single common ancestor. All
primary plastids are surrounded by two
membranes, because the cyanobacteria
was enclosed in a vacuole.16 The inner
wall being that of the bacterium, the
outer wall that of the alga.17 Most
plastids contain a single, circular
chromosome of about 200 kilobases and
encode about 100-120 genes, while a
free-living cyanobacteria typically has
a genome of about 2500 Kilobases. The
genes that remain in the plastid are
primarily involved in photosynthesis,
transcription and translation of
plastid genes, and ATP synthesis. But,
most of the genes needed to maintain
the plastid are encoded in the cell
nucleus.18

A secondary plastid endosymbiosis,
where an algae cell is captured instead
of a cyanobacteria, which results in a
plastid with more than two membranes,
has happened at least three times.
Euglenozoa and chlorarachniophytes
acquired plastids from green alga, and
the Chromalveolates (the most abundant
group with secondary plastids) acquired
them from a red alga.19

A third (tertiary) plastid
endosymbiosis occurs when an alga
containing a plastid of secondary
endosymbiotic origin (for example a
chromist) is engulfed and reduced to a
photosynthetic organelle.
Dinoflagellates are the only group
currently known to have tertiary
plastids. Tertiary plastids in
dinoflagellates have been acquired from
haptophyte and prasinophyte algae and
from diatoms. Currently there are five
plastids known in dinoflagellates, each
with its own evolutionary history.20

There are different kinds of plastids
including aleuroplasts, amyloplasts,
chloroplasts, chromoplasts,
elaioplasts, and etioplasts.21
FOOTNOTE
S
1. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
2. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
3. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
4. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
5. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p551.
6. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
7. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p551.
8. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
9. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p551.
10. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
11. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p551.
12. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
13. ^
Hackett JD, Yoon HS, Butterfield NJ,
Sanderson MJ, Bhattacharya D, "Plastid
endosymbiosis: Sources and timing of
the major events.", in: Falkowski P,
Knoll A, editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
14. ^
S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
15. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p551.
16. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
17. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p551.
18. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
19. ^
Hackett JD, Yoon HS, Butterfield NJ,
Sanderson MJ, Bhattacharya D, "Plastid
endosymbiosis: Sources and timing of
the major events.", in: Falkowski P,
Knoll A, editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
20. ^
Hackett JD, Yoon HS, Butterfield NJ,
Sanderson MJ, Bhattacharya D, "Plastid
endosymbiosis: Sources and timing of
the major events.", in: Falkowski P,
Knoll A, editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
21. ^
"Plastid". Oxford Dictionary of
Biochemistry. Oxford University Press.
Oxford Dictionary of Biochemistry and
Molecular Biology © 1997, 2000, 2006
All rights reserved.
http://www.answers.com/topic/plastid
22. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1300
mybn}
23. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120. {c1600 my}
24.
^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002)., see
comments {1576 MYBN}
25. ^ Knoll A, Summons
R, Waldbauer J, Zumberge J, "The
Geological Succession of Primary
Producers in the Oceans", in: Falkowski
P, Knoll A, editors. "Evolution of
primary producers in the sea.",
Elsevier; 2007, p152. {no later than)
1200 my}
26. ^ S. Blair Hedges, "The Origin
and Evolution of Model Organisms",
Nature Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002)., see
comments {1576 MYBN} {needs to be at
least as old as Euglenozoa since many
have plastids)1956} {Euglenozoa)1956}

MORE INFO
[1] "Plastid". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Plastid
 
[1] Description Plagiomnium
affine, Laminazellen, Rostock Date
created 01.11.2006 Source
photographed by myself Author
Kristian Peters --
Fabelfroh Permission (Reusing this
file) GFDL
source: http://upload.wikimedia.org/wiki
pedia/commons/4/49/Plagiomnium_affine_la
minazellen.jpeg

1,300,000,000 YBN
32 33 34 35 36 37 38
209)
FOOTNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
4. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
5. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

6. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

7. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
8. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
9. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
10. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

11. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

12. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
13. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
14. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
15. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

16. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

17. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
18. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
19. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
20. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

21. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

22. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
23. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
24. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
25. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

26. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

27. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
28. ^ Seung Yeo Moon-van der
Staay, Rupert De Wachter, Daniel
Vaulot, "Oceanic 18S rDNA sequences
from picoplankton reveal unsuspected
eukaryotic diversity", Nature, (2001).
29. ^
Elizabeth Pennisi, "Drafting a Tree",
Science, (2003).
30. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
http://www.nature.com/nrg/journal/v3/n
11/abs/nrg929.html

31. ^ Hedges and Kumar, "Time Tree of
Life", 2009, p117. timetree.org
32. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {first plastid) 1300mybn}
33. ^ Hackett JD,
Yoon HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
{first plastid) c1600}
34. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1550 mybn}
35. ^ S Blair Hedges, Jaime
E Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2
(1609 mybn)
36. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (c1500)
37. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
{1580} http://www.nature.com/nrg/journa
l/v3/n11/abs/nrg929.html

38. ^ Han and Runnegar 1992. T.-M. Han
and B. Runnegar, Megascopic eukaryotic
algae from the 2.1-billion-year-old
Negaunee Iron-Formation, Michigan.
Science 257 (1992), pp.
232-235 science_2100_han_runnegar_algal
_cysts.pdf {fossil Grypania) 1874my}

MORE INFO
[1] Thomas Cavalier-Smith and Ema
E. -Y. Chao, "Phylogeny of Choanozoa,
Apusozoa, and Other Protozoa and Early
Eukaryote Megaevolution", Springer New
York,
(2003). file:///home/ted/ulsf/docs/cav-
smith_apusozoa_fulltext.html
 
[1] ? COPYRIGHTED
source: http://protist.i.hosei.ac.jp/PDB
3/PCD3711/htmls/86.html


[2] (See Image) COPYRIGHTED
source: Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (c1500)

1,300,000,000 YBN
8 9 10 11
219) unicellular to multicellular (up
to 1 m) mostly free-living but some
parasitic or symbiotic, with
chloroplasts containing phycobilins.
Cell walls made of cellulose with
mucopolysaccharides penetrated in many
red algae by pores partially blocked by
proteins (complex referred to as pit
connections). Usually with separated
phases of vegetative growth and sexual
reproduction. Common and widespread,
ecologically important, economically
important (source of agar). No
flagella. Ultrastructural identity:
Mitochondria with flat cristae,
sometimes associated with forming faces
of dictyosomes. Thylakoids single, with
phycobilisomes, plastids with
peripheral thylakoid. During mitosis,
nuclear envelope mostly remains intact
but some microtubules of spindle extend
from noncentriolar polar bodies through
polar gaps in the nuclear envelope.
Synapomorphy: No clear-cut feature
available; possibly pit connections
Composition: About 4,000 species. 7
FOO
TNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
4. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
5. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
6. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
7. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P9565

8. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1300mybn)
9. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1450 mybn}
10. ^ S Blair Hedges, Jaime
E Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1428mybn)
11. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.

MORE INFO
[1]
http://www.sirinet.net/~jgjohnso/apbio30
.html

 
[1] Close-up of a red alga (Genus?
Laurencia), Class Florideophyceae,
Order=? a marine seaweed from Hawaii.
GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Laurencia.jpg


[2] Bangia atropurpurea Profile:
unbranched filaments in tufts. Often
forming dense fringes in the spalsh
zone. Uniseriate at base, multiseriate
above with protoplasts separate in a
firm gelatinous sheath. Stellate
chloroplasts. US NOAA PD
source: http://www.glerl.noaa.gov/seagra
nt/GLWL/Algae/Rhodophyta/Cards/Bangia.ht
ml

1,300,000,000 YBN
26 27 28 29 30 31 32
323)
FOOTNOTES
1. ^
http://howjsay.com/index.php?word=giardi
a&submit=Submit

2. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
5. ^
http://howjsay.com/index.php?word=paraba
salid&submit=Submit

6. ^
http://howjsay.com/index.php?word=diplom
onads&submit=Submit

7. ^
http://howjsay.com/index.php?word=giardi
a&submit=Submit

8. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
10. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
11. ^
http://howjsay.com/index.php?word=paraba
salid&submit=Submit

12. ^
http://howjsay.com/index.php?word=diplom
onads&submit=Submit

13. ^
http://howjsay.com/index.php?word=giardi
a&submit=Submit

14. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

15. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
16. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
17. ^
http://howjsay.com/index.php?word=paraba
salid&submit=Submit

18. ^
http://howjsay.com/index.php?word=diplom
onads&submit=Submit

19. ^
http://howjsay.com/index.php?word=giardi
a&submit=Submit

20. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

21. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
22. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
23. ^ Jan
Tachezy, "Hydrogenosomes and mitosomes:
mitochondria of anaerobic eukaryotes",
2008 http://books.google.com/books?id=L
sPkO1fMPvQC&pg=PA273

24. ^ Donald G. Lindmark and Miklós
Müller, "Hydrogenosome, a Cytoplasmic
Organelle of the Anaerobic Flagellate
Tritrichomonas foetus, and Its Role in
Pyruvate Metabolism", J. Biol. Chem.
1973 248: 7724-7728.
http://www.jbc.org/content/248/22/7724
.short

25. ^ Tovar, Jorge, Anke Fischer, and
C. Graham Clark. “The mitosome, a
novel organelle related to mitochondria
in the amitochondrial parasite
Entamoeba histolytica.” Molecular
Microbiology 32.5 (1999):
1013-1021. http://onlinelibrary.wiley.c
om/doi/10.1046/j.1365-2958.1999.01414.x/
full

26. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1300
mybn}
27. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120. {2000 my}
28.
^ S Blair Hedges, Jaime E Blair, Maria
L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
{2291} {2291 my}
29. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004). {1600}
{1600 my}
30. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
{2230} {2230 my}
31. ^ S. Blair Hedges and
Sudhir Kumar, "The TimeTree of Life",
2009,
p117-118. http://www.timetree.org/book.
php
{1594 my}
32. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{1030 mybn}

MORE INFO
[1] "Heterokonts". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Heterokonts

[2] http://sn2000.taxonomy.nl/
 
[1] A timescale of eukaryote evolution.
The times for each node are taken from
the summary times in Table 1, except
for nodes 1 (310 Ma), 2 (360 Ma), 3
(450 Ma), and 4 (520 Ma), which are
from the fossil record [25]; nodes 8
(1450 Ma) and 16 (1587 Ma) are
phylogenetically constrained and are
the midpoints between adjacent nodes.
Nodes 12–14 were similar in time and
therefore shown as a multifurcation at
1000 Ma; likewise, nodes 21–22 are
shown as a multifurcation at 1967 Ma.
The star indicates the occurrence of
red algae in the fossil record at 1200
Ma, the oldest taxonomically
identifiable eukaryote [12]. Hedges
et al. BMC Evolutionary Biology 2004
4:2
doi:10.1186/1471-2148-4-2 COPYRIGHTED
source: http://www.biomedcentral.com/con
tent/figures/1471-2148-4-2-2.jpg


[2] Giardia lamblia, a parasitic
flagellate that causes giardiasis.
Image from public domain source at
http://www.nigms.nih.gov/news/releases/i
mages/para.jpg
source: http://www.nigms.nih.gov/news/re
leases/images/para.jpg

1,274,000,000 YBN
19 20
187) A captured red alga (rhodophyte),
through endosymbiosis, becomes a
plastid in the ancestor of all
chromalveolates.15 16 17

A secondary plastid endosymbiosis,
where an algae cell is captured instead
of a cyanobacteria, has happened at
least three times. A secondary plastid
symbiosis results in a plastid with
more than two membranes. Two groups
have acquired plastids from green algae
independently: the euglenozoa, which
are fresh-water algae, and the
chlorarachniophytes. The most abundant
groups with secondary plastids acquired
them from the red algae. Five algal
lineages have plastids of red algal
origin. These include the crytophytes,
the haptophytes, the Strameopiles,
which all together are the Chromista,
and the Alveolates apicomplexans and
dinoflagellates. The alveolate ciliates
are thought to have lost their plastid
and no traces of the organelle have yet
been found. The parasitic apicomplexans
have lost the ability to do
photosynthesis, probably because of
their intercellular lifestyle, but do
maintain a vestigial organelle derived
from a plastid called the apicoplast,
which is surrounded by four membranes
and has a small genome.18
FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

3. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
4. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

5. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
6. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
7. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
8. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

9. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
10. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
11. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
12. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

13. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
14. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
15. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
16. ^ CAVALIER-SMITH, THOMAS.
“Economy, Speed and Size Matter:
Evolutionary Forces Driving Nuclear
Genome Miniaturization and
Expansion.” Annals of Botany 95.1
(2005) : 147 -175.
Print. http://aob.oxfordjournals.org/co
ntent/95/1/147.short

17. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
18. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
19. ^
Yoon, Hwan Su et al. “A Molecular
Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract
{1274 mybn}
20. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). {1280mybn}
 
[1] Fig. 2. The tree of life based
on molecular, ultrastructural and
palaeontological evidence. Contrary to
widespread assumptions, the root is
among the eubacteria, probably within
the double-enveloped Negibacteria, not
between eubacteria and archaebacteria
(Cavalier-Smith, 2002b); it may lie
between Eobacteria and other
Negibacteria (Cavalier-Smith, 2002b).
The position of the eukaryotic root has
been nearly as controversial, but is
less hard to establish: it probably
lies between unikonts and bikonts (Lang
et al., 2002; Stechmann and
Cavalier-Smith, 2002, 2003). For
clarity the basal eukaryotic kingdom
Protozoa is not labelled; it comprises
four major groups (alveolates, cabozoa,
Amoebozoa and Choanozoa) plus the small
bikont phylum Apusozoa of unclear
precise position; whether Heliozoa are
protozoa as shown or chromists is
uncertain (Cavalier-Smith, 2003b).
Symbiogenetic cell enslavement occurred
four or five times: in the origin of
mitochondria and chloroplasts from
different negibacteria, of
chromalveolates by the enslaving of a
red alga (Cavalier-Smith, 1999, 2003;
Harper and Keeling, 2003) and in the
origin of the green plastids of
euglenoid (excavate) and chlorarachnean
(cercozoan) algae—a green algal cell
was enslaved either by the ancestral
cabozoan (arrow) or (less likely) twice
independently within excavates and
Cercozoa (asterisks) (Cavalier-Smith,
2003a). The upper thumbnail sketch
shows membrane topology in the
chimaeric cryptophytes (class
Cryptophyceae of the phylum Cryptista);
in the ancestral chromist the former
food vacuole membrane fused with the
rough endoplasmic reticulum placing the
enslaved cell within its lumen (red) to
yield the complex membrane topology
shown. The large host nucleus and the
tiny nucleomorph are shown in blue,
chloroplast green and mitochondrion
purple. In chlorarachneans (class
Chlorarachnea of phylum Cercozoa) the
former food vacuole membrane remained
topologically distinct from the ER to
become an epiplastid membrane and so
did not acquire ribosomes on its
surface, but their membrane topology is
otherwise similar to the cryptophytes.
The other sketches portray the four
major kinds of cell in the living world
and their membrane topology. The upper
ones show the contrasting ancestral
microtubular cytoskeleton (ciliary
roots, in red) of unikonts (a cone of
single microtubules attaching the
single centriole to the nucleus, blue)
and bikonts (two bands of microtubules
attached to the posterior centriole and
an anterior fan of microtubules
attached to the anterior centriole).
The lower ones show the single plasma
membrane of unibacteria (posibacteria
plus archaebacteria), which were
ancestral to eukaryotes and the double
envelope of negibacteria, which were
ancestral to mitochondria and
chloroplasts (which retained the outer
membrane, red). COPYRIGHTED
source: http://aob.oxfordjournals.org/co
ntent/95/1/147/F2.large.jpg


[2] Figure 3: Fig. 3. Schematic
representation of the evolutionary
relationships and divergence times for
the red, green, glaucophyte, and
chromist algae. These photosynthetic
groups are outgroup-rooted with the
Opisthokonta which putatively
ancestrally lacked a plastid. The
branches on which the cyanobacterial
(CB) primary and red algal chromist
secondary endosymbioses occurred are
shown Figure 3 from: Yoon, Hwan Su
et al. “A Molecular Timeline for the
Origin of Photosynthetic Eukaryotes.”
Molecular Biology and Evolution 21.5
(2004): 809 -818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract COPYRIGHTED
source: http://mbe.oxfordjournals.org/co
ntent/21/5/809/F3.large.jpg

1,250,000,000 YBN
10
15) Differentiation in multicellular
eukaryote. Gamete (or spore) cells and
somatic cells. Unlike gamete cells,
somatic cells are asexual (non-fusing),
and are not omnipotent. Start of death
by aging.

Cell differentiation is how cells in a
multicellular organism become
specialized to perform specific
functions in a variety of tissues and
organs.5

All cells of an organism, except the
sperm and egg cells, the cells from
which they arise (gametocytes) and
undifferentiated stem cells, are
somatic cells.6

Although the DNA in each cell of a
multicellular organism is the same7 ,
each differentiated cell type produces
a different set of specific proteins,
for example liver cells make albumin
while lens cells make crystallin8 .

Another early cell differentiation are
that only the cell at the tip of the
filament can divide while the older
cells below the tip do not divide.9
FOO
TNOTES
1. ^ "cell differentiation."
McGraw-Hill Encyclopedia of Science and
Technology. The McGraw-Hill Companies,
Inc., 2005. Answers.com 25 Mar. 2012.
http://www.answers.com/topic/cell-differ
entiation

2. ^ "cell differentiation."
McGraw-Hill Encyclopedia of Science and
Technology. The McGraw-Hill Companies,
Inc., 2005. Answers.com 25 Mar. 2012.
http://www.answers.com/topic/cell-differ
entiation

3. ^
http://www.biology-online.org/dictionary
/Somatic_cells

4. ^ Alexandre Meinesz, "How life
began: evolution's three geneses",
2008,
p155. http://books.google.com/books?id=
AL0fo20Tk3sC&pg=PA155

5. ^ "cell differentiation."
McGraw-Hill Encyclopedia of Science and
Technology. The McGraw-Hill Companies,
Inc., 2005. Answers.com 25 Mar. 2012.
http://www.answers.com/topic/cell-differ
entiation

6. ^
http://www.biology-online.org/dictionary
/Somatic_cells

7. ^ Nicholas H. Barton, "Evolution",
2007,
p230-238. http://books.google.com/books
?id=mMDFQ32oMI8C&pg=PA225

8. ^ Campbell, Reece, et al, "Biology",
Eighth Edition, 2009, p368.
9. ^ Alexandre
Meinesz, "How life began: evolution's
three geneses", 2008,
p155. http://books.google.com/books?id=
AL0fo20Tk3sC&pg=PA155

10. ^ Butterfield N. J. A. H. Knoll K.
Swett, "A bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905
{Bangia) 1250 mybn}
 
[1] Volvoxcell differentiation. The
pathways leading to germ cells or
somatic cells are controlled by genes
that cause cells to follow one or the
other fate. Mutations can prevent the
formation of one of these lineages.
http://www.devbio.com/chap02/link0204.sh
tml Although all the volvocaceans,
like their unicellular relative
Chlamydomonas, reproduce predominantly
by asexual means, they are also capable
of sexual reproduction, which involves
the production and fusion of haploid
gametes. In many species of
Chlamydomonas, including the one
illustrated in Figure 2.10, sexual
reproduction is isogamous (“the same
gametes”), since the haploid gametes
that meet are similar in size,
structure, and motility. However, in
other species of Chlamydomonas—as
well as many species of colonial
volvocaceans—swimming gametes of very
different sizes are produced by the
different mating types. This pattern is
called heterogamy (“different
gametes”). But the larger
volvocaceans have evolved a specialized
form of heterogamy, called oogamy,
which involves the production of large,
relatively immotile eggs by one mating
type and small, motile sperm by the
other (see Sidelights and
Speculations) UNKNOWN
source: http://www.ncbi.nlm.nih.gov/book
s/NBK10031/bin/ch2f12.jpg


[2] Description English: Four
Different Species of Volvocales Algae.
(A) Gonium pectorale, (B) Eudorina
elegans, (C) Pleodorina californica,
and (D) Volvox carteri. These are
unicellular organisms that live in
colonies and have both large and small
gametes. Date Published: June 15,
2004 Source Whitfield J:
Everything You Always Wanted to Know
about Sexes. PLoS Biol 2/6/2004: e183.
http://dx.doi.org/10.1371/journal.pbio.0
020183 Author Photo courtesy of
Aurora M. Nedelcu, from the Volvocales
Information Project
(http://www.unbf.ca/vip/index.htm). Per
mission (Reusing this file) See
below. CC
source: http://upload.wikimedia.org/wiki
pedia/commons/c/c5/Volvocales.png

1,250,000,000 YBN
31 32 33 34 35 36
88)
FOOTNOTES
1. ^
http://howjsay.com/index.php?word=chroma
lveolates&submit=Submit

2. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

3. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

4. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2

5. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004),p540.
6. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full

7. ^ Baldauf, S. L. “The Deep Roots
of Eukaryotes.” Science 300.5626
(2003) : 1703
-1706. http://www.sciencemag.org/conten
t/300/5626/1703.short

8. ^
http://howjsay.com/index.php?word=chroma
lveolates&submit=Submit

9. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

10. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

11. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2

12. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004),p540.
13. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full

14. ^ Baldauf, S. L. “The Deep Roots
of Eukaryotes.” Science 300.5626
(2003) : 1703
-1706. http://www.sciencemag.org/conten
t/300/5626/1703.short

15. ^
http://howjsay.com/index.php?word=chroma
lveolates&submit=Submit

16. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

17. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

18. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2

19. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004),p540.
20. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full

21. ^ Baldauf, S. L. “The Deep Roots
of Eukaryotes.” Science 300.5626
(2003) : 1703
-1706. http://www.sciencemag.org/conten
t/300/5626/1703.short

22. ^
http://howjsay.com/index.php?word=chroma
lveolates&submit=Submit

23. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

24. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
25. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full

26. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

27. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
28. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full

29. ^
http://www.ncbi.nlm.nih.gov/entrez/query
.fcgi?cmd=retrieve&db=pubmed&list_uids=1
2698292&dopt=Abstract
J Mol Evol. 2003
May;56(5):540-63. Phylogeny of
choanozoa, apusozoa, and other protozoa
and early eukaryote
megaevolution. Cavalier-Smith T, Chao
EE. /home/ted/ulsf/docs/cav-smith_apuso
zoa_fulltext.html
30. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=85966

http://comenius.susqu.edu/BI/202/Taxa.
htm (for 5 supergroups info)
31. ^ Yoon,
Hwan Su et al. “A Molecular Timeline
for the Origin of Photosynthetic
Eukaryotes.” Molecular Biology and
Evolution 21.5 (2004): 809 -818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract
{c1250 mybn}
32. ^
Hackett JD, Yoon HS, Butterfield NJ,
Sanderson MJ, Bhattacharya D, "Plastid
endosymbiosis: Sources and timing of
the major events.", in: Falkowski P,
Knoll A, editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1300 mybn}
33. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1665 mybn}
34. ^ S Blair Hedges, Jaime
E Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2
(1973mybn)
35. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1600mybn)
36. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1600mybn}

MORE INFO
[1] "Brown alga". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Brown_alga
[2] Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). http://www.sciencemag.org/conte
nt/290/5493/972.full
has heterkonts
before ciliophora and apicomplexa
branch
 
[1] S. Blair Hedges and Sudhir Kumar,
''The TimeTree of Life'', 2009,
p117-118. http://www.timetree.org/book.
php COPYRIGHTED
source: http://www.timetree.org/book.php


[2] Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
''Plastid endosymbiosis: Sources and
timing of the major events.'', in:
Falkowski P, Knoll A, editors.
''Evolution of primary producers in the
sea.'', Elsevier; 2007, p120.
COPYRIGHTED
source: Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120.

1,250,000,000 YBN
20
201)
FOOTNOTES
1. ^ Butterfield N. J. A. H. Knoll K.
Swett, "A bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

2. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

3. ^ Knoll, Summons, Waldbauer,
Zumberge, "The Geological Succession of
Primary Producers in the Oceans", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p149-150.
4. ^ Butterfield
N. J. A. H. Knoll K. Swett, "A
bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

5. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

6. ^ Knoll, Summons, Waldbauer,
Zumberge, "The Geological Succession of
Primary Producers in the Oceans", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p149-150.
7. ^ Butterfield
N. J. A. H. Knoll K. Swett, "A
bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

8. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

9. ^ Knoll, Summons, Waldbauer,
Zumberge, "The Geological Succession of
Primary Producers in the Oceans", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p149-150.
10. ^
Butterfield N. J. A. H. Knoll K. Swett,
"A bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

11. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

12. ^ Knoll, Summons, Waldbauer,
Zumberge, "The Geological Succession of
Primary Producers in the Oceans", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p149-150.
13. ^ Nicholas
J. Butterfield, "Bangiomorpha pubescens
n. gen., n. sp.: implications for
the evolution of sex,
multicellularity, and the
Mesoproterozoic/ Neoproterozoic
radiation of eukaryotes", Paleobiology,
26(3), 2000, pp.
386–404. http://www.algaebase.org/pdf
/AC100CF316a8734043nPXq2B4E75/386.pdf

14. ^
http://nas.er.usgs.gov/queries/factsheet
.aspx?SpeciesID=1700

15. ^ Knoll, Summons, Waldbauer,
Zumberge, "The Geological Succession of
Primary Producers in the Oceans", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p149-150.
16. ^
Butterfield N. J. A. H. Knoll K. Swett,
"A bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905

17. ^ Nicholas J. Butterfield,
"Bangiomorpha pubescens n. gen., n.
sp.: implications for the evolution of
sex, multicellularity, and the
Mesoproterozoic/ Neoproterozoic
radiation of eukaryotes", Paleobiology,
26(3), 2000, pp.
386–404. http://www.algaebase.org/pdf
/AC100CF316a8734043nPXq2B4E75/386.pdf

18. ^ Science 1990 vol 250 Butterfield
N. J. A. H. Knoll K. Swett 1990 A
bangiophyte red alga from the
Proterozoic of Arctic Canada. Science
250: 104-107
http://www.jstor.org/stable/2877905
19. ^ Paleobiology Volume 26, Issue 3
(September
2000) http://www.bioone.org/perlserv/?r
equest=get-document&doi=10.1666%2F0094-8
373%282000%29026%3C0386%3ABPNGNS%3E2.0.C
O%3B2

20. ^ Science 1990 vol 250 Butterfield
N. J. A. H. Knoll K. Swett 1990 A
bangiophyte red alga from the
Proterozoic of Arctic Canada. Science
250: 104-107
http://www.jstor.org/stable/2877905
{1250 mybn}
(Hunting Formation) Somerset Island,
arctic Canada18 19  

[1] Figure 4 from: Science 1990 vol
250 Butterfield N. J. A. H. Knoll K.
Swett 1990 A bangiophyte red alga from
the Proterozoic of Arctic Canada.
Science 250: 104-107
http://www.jstor.org/stable/2877905
COPYRIGHTED
source: http://www.jstor.org/stable/2877
905


[2] Figure 2 from: Science 1990 vol
250 Butterfield N. J. A. H. Knoll K.
Swett 1990 A bangiophyte red alga from
the Proterozoic of Arctic Canada.
Science 250: 104-107
http://www.jstor.org/stable/2877905
COPYRIGHTED
source: http://www.jstor.org/stable/2877
905

1,250,000,000 YBN
6
301)
FOOTNOTES
1. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
2. ^ John Ringo,
"Fundamental Genetics", 2004, p201.
3. ^ John
Ringo, "Fundamental Genetics", 2004,
p201.
4. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
5. ^ Raven, Evert,
Eichhorn, "Biology of Plants", (New
York: Worth Publishers, 1992).
6. ^
Butterfield N. J. A. H. Knoll K. Swett,
"A bangiophyte red alga from the
Proterozoic of Arctic Canada.", Science
1990 vol 250 1990,
p104-107. http://www.jstor.org/stable/2
877905


MORE INFO
[1] Mark Kirkpatrick, "The
evolution of haploid-diploid life
cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

 
[1] Drawn by self for Biological life
cycle Based on Freeman & Worth's
Biology of Plants (p. 171). GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Sporic_meiosis.png


[2] Figure 23.1.Plants have
haplodiplontic life cycles that involve
mitotic divisions (resulting in
multicellularity) in both the haploid
and diploid generations (paths A and
D). Most animals are diplontic and
undergo mitosis only in the diploid
generation (paths B and D).
Multicellular organisms with haplontic
life cycles follow paths A and C.
COPYRIGHTED EDU
source: http://zygote.swarthmore.edu/pla
ntfig1.gif

1,230,000,000 YBN
2
153)
FOOTNOTES
1. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
2. ^ Russell F. Doolittle,
Da-Fei Feng, Simon Tsang, Glen Cho,
Elizabeth Little, "Determining
Divergence Times of the Major Kingdoms
of Living Organisms with a Protein
Clock", Science, (1996).
  
1,200,000,000 YBN
11 12 13 14
221)
FOOTNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

{Hedges_Venturi_Shoe_20031110.pdf}
2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

4. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
5. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

8. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
9. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2

10. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
11. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
{c1200 mybn}
12. ^ S. Blair Hedges and Sudhir
Kumar, "The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1368 mybn}
13. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
http://www.biomedcentral.com/1471-2148
/4/2
(1513mybn) {1513 mybn}
14. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (c1200) {c1100} {c1100 mybn}
 
[1] Microsporidia. Image from Sterling
Parasitology Microsporidia
Research. UNKNOWN
source: http://microbewiki.kenyon.edu/im
ages/3/37/Micro2.jpg


[2] Penicillium [t Note: Penecillium
is a multicellular fungi.] UNKNOWN
source: http://www.mold-help.org/pages/i
mages/Penicillium.jpg

1,200,000,000 YBN
12 13
6295)
FOOTNOTES
1. ^ Rasmussen, Birger et al.
“Discoidal Impressions and Trace-Like
Fossils More Than 1200 Million Years
Old.” Science 296.5570 (2002): 1112
-1115.
http://www.sciencemag.org/content/296/
5570/1112.full

2. ^
http://news.bbc.co.uk/2/hi/science/natur
e/1977935.stm

3. ^ Rasmussen, Birger et al.
“Discoidal Impressions and Trace-Like
Fossils More Than 1200 Million Years
Old.” Science 296.5570 (2002): 1112
-1115.
http://www.sciencemag.org/content/296/
5570/1112.full

4. ^
http://news.bbc.co.uk/2/hi/science/natur
e/1977935.stm

5. ^ "vermiform." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 26
Dec. 2011.
http://www.answers.com/topic/vermiform
6. ^ Rasmussen, Birger et al.
“Discoidal Impressions and Trace-Like
Fossils More Than 1200 Million Years
Old.” Science 296.5570 (2002): 1112
-1115.
http://www.sciencemag.org/content/296/
5570/1112.full

7. ^ Rasmussen, Birger et al.
“Discoidal Impressions and Trace-Like
Fossils More Than 1200 Million Years
Old.” Science 296.5570 (2002): 1112
-1115.
http://www.sciencemag.org/content/296/
5570/1112.full

8. ^
http://news.bbc.co.uk/2/hi/science/natur
e/1977935.stm

9. ^ "vermiform." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 26
Dec. 2011.
http://www.answers.com/topic/vermiform
10. ^ Rasmussen, Birger et al.
“Discoidal Impressions and Trace-Like
Fossils More Than 1200 Million Years
Old.” Science 296.5570 (2002): 1112
-1115.
http://www.sciencemag.org/content/296/
5570/1112.full

11. ^ Rasmussen, Birger et al.
“Discoidal Impressions and Trace-Like
Fossils More Than 1200 Million Years
Old.” Science 296.5570 (2002): 1112
-1115.
http://www.sciencemag.org/content/296/
5570/1112.full

12. ^ Rasmussen, Birger et al.
“Discoidal Impressions and Trace-Like
Fossils More Than 1200 Million Years
Old.” Science 296.5570 (2002): 1112
-1115.
http://www.sciencemag.org/content/296/
5570/1112.full
{1200 mybn}
13. ^
http://news.bbc.co.uk/2/hi/science/natur
e/1977935.stm
{1200 mybn}
(Stirling Range Formation) Southwestern
Australia11  

[1] The oldest evidence of
multicellular animals to
date? COPYRIGHTED
source: http://news.bbc.co.uk/olmedia/19
75000/images/_1977935_worm300.jpg


[2] Figure 2 Trace-like fossils,
locality Barnett Peak, positive
hyporelief, UWA 114336. (A, C, and E)
Overviews of surfaces with
double-ridged trails. There is
low-angle lighting from the left, and
the samples are shown at the same
magnification. (B, D, and F) Drawings
showing the extent of ridges (blue).
Fractures and microfaults on the
surface are indicated in red, specimens
with a U-shaped ending are marked with
the letters “u” and “x,” and
arrows point to instances of apparent
crosscutting [black U-shaped ending
“x” in (F) is in concave
preservation]. (G and H) Close-ups of
specimens [compare positions in (B) and
(F)] with U-shaped and open expanding
ends. The specimens are coated with
ammonium chloride, and there is
low-angle lighting from the left.
Figure 2 from: Rasmussen, Birger et
al. “Discoidal Impressions and
Trace-Like Fossils More Than 1200
Million Years Old.” Science 296.5570
(2002): 1112 -1115.
http://www.sciencemag.org/content/296/
5570/1112.full COPYRIGHTED
source: http://www.sciencemag.org/conten
t/296/5570/1112/F2.large.jpg

1,189,000,000 YBN
13 14 15 16
305) Chromista "Cryptophyta"
{KriPTuFITu10 } (Cryptomonads
{KRiPToMunaDZ11 }).12
FOOTNOTES
1. ^
http://howjsay.com/index.php?word=crypto
phyta&submit=Submit

2. ^ "crypto monad". Dictionary.com
Unabridged (v 1.1). Random House, Inc.

http://dictionary.reference.com/browse/c
rypto+monad

3. ^ Yoon, Hwan Su et al. “A
Molecular Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract

4. ^
http://howjsay.com/index.php?word=crypto
phyta&submit=Submit

5. ^ "crypto monad". Dictionary.com
Unabridged (v 1.1). Random House, Inc.

http://dictionary.reference.com/browse/c
rypto+monad

6. ^ Yoon, Hwan Su et al. “A
Molecular Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract

7. ^
http://howjsay.com/index.php?word=crypto
phyta&submit=Submit

8. ^ "crypto monad". Dictionary.com
Unabridged (v 1.1). Random House, Inc.

http://dictionary.reference.com/browse/c
rypto+monad

9. ^ Yoon, Hwan Su et al. “A
Molecular Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract

10. ^
http://howjsay.com/index.php?word=crypto
phyta&submit=Submit

11. ^ "crypto monad". Dictionary.com
Unabridged (v 1.1). Random House, Inc.

http://dictionary.reference.com/browse/c
rypto+monad

12. ^ Yoon, Hwan Su et al. “A
Molecular Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract

13. ^ Yoon, Hwan Su et al. “A
Molecular Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract

14. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1973mybn)
15. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1600mybn)
16. ^ Sandra L.
Baldauf, A. J. Roger, I. Wenk-Siefert,
W. F. Doolittle, "A Kingdom-Level
Phylogeny of Eukaryotes Based on
Combined Protein Data", Science, Vol
290, num 5493, p 972, (2000). has
heterkonts before ciliophora and
apicomplexa branch

MORE INFO
[1] "Cryptomonas". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Cryptomonas

[2]
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P1761

[3]
http://www.ncbi.nlm.nih.gov/entrez/query
.fcgi?cmd=Retrieve&db=PubMed&list_uids=8
328023&dopt=Abstract

http://ijs.sgmjournals.org/cgi/content
/full/53/6/1707 describes some of the
conflict about the placement of
cryptomonads
[4]
http://nar.oxfordjournals.org/cgi/conten
t/full/26/4/865

[5]
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P1901&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

 
[1] Fig. 1. A consensus phylogeny of
eukaryotes. The vast majority of
characterized eukaryotes, with the
notable exception of major subgroups of
amoebae, can now be assigned to one of
eight major groups. Opisthokonts (basal
flagellum) have a single basal
flagellum on reproductive cells and
flat mitochondrial cristae (most
eukaryotes have tubular ones).
Eukaryotic photosynthesis originated in
Plants; theirs are the only plastids
with just two outer membranes.
Heterokonts (different flagellae) have
a unique flagellum decorated with
hollow tripartite hairs (stramenopiles)
and, usually, a second plain one.
Cercozoans are amoebae with filose
pseudopodia, often living with in tests
(hard outer shells), some very
elaborate (foraminiferans). Amoebozoa
are mostly naked amoebae (lacking
tests), often with lobose pseudopodia
for at least part of their life cycle.
Alveolates have systems of cortical
alveoli directly beneath their plasma
membranes. Discicristates have discoid
mitochondrial cristae and, in some
cases, a deep (excavated) ventral
feeding groove. Amitochondrial
excavates lack substantial molecular
phylogenetic support, but most have an
excavated ventral feeding groove, and
all lack mitochondria. The tree shown
is based on a consensus of molecular
(1-4) and ultrastructural (16, 17) data
and includes a rough indication of new
ciPCR ''taxa'' (broken black lines)
(7-11). An asterisk preceding the taxon
name indicates probable paraphyletic
group COPYRIGHTED
source: http://www.sciencemag.org/cgi/co
ntent/full/300/5626/1703


[2] Figure 1. Phylogenetic hypothesis
of the eukaryotic lineage based on
ultrastructural and molecular data.
Organisms are divided into three main
groups distinguished by mitochondrial
cristal shape (either discoidal,
flattened or tubular). Unbroken lines
indicate phylogenetic relationships
that are firmly supported by available
data; broken lines indicate
uncertainties in phylogenetic
placement, resolution of which will
require additional data. Color coding
of organismal genus names indicates
mitochondrial genomes that have been
completely (Table 1), almost completely
(Jakoba, Naegleria and
Thraustochytrium) or partially (*)
sequenced by the OGMP (red), the FMGP
(black) or other groups (green). Names
in blue indicate those species whose
mtDNAs are currently being sequenced by
the OGMP or are future candidates for
complete sequencing. Amitochondriate
retortamonads are positioned at the
base of the tree, with broken arrows
denoting the endosymbiotic origin(s) of
mitochondria from a Rickettsia-like
eubacterium. Macrophar.,
Macropharyngomonas. COPYRIGHTED
source: http://nar.oxfordjournals.org/cg
i/content/full/26/4/865

1,180,000,000 YBN
22 23 24 25 26 27 28
6280)
FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

2. ^ 2. ^ "dinoflagellate." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 28 Dec. 2011.
http://www.answers.com/topic/dinoflagell
ate

3. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004).http://www.biomedcentral.com/1471
-2148/4/2
{Hedges_Venturi_Shoe_20031110
.pdf}
4. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p538.
5. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p135.
6. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

7. ^ 7. ^ "dinoflagellate." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 28 Dec. 2011.
http://www.answers.com/topic/dinoflagell
ate

8. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
9. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p538.
10. ^ Brusca and
Brusca, "Invertebrates", Second
Edition, 2003, p135.
11. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

12. ^ 12. ^ "dinoflagellate." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 28 Dec. 2011.
http://www.answers.com/topic/dinoflagell
ate

13. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
14. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p538.
15. ^ Brusca and
Brusca, "Invertebrates", Second
Edition, 2003, p135.
16. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p135.
17. ^
http://www.howjsay.com/index.php?word=al
veolates&submit=Submit

18. ^ 18. ^ "dinoflagellate." The
American Heritage® Dictionary of the
English Language, Fourth Edition.
Houghton Mifflin Company, 2004.
Answers.com 28 Dec. 2011.
http://www.answers.com/topic/dinoflagell
ate

19. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
20. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p538.
21. ^ Brusca and
Brusca, "Invertebrates", Second
Edition, 2003, p135.
22. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1180 mybn}
23. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1480 my}
24. ^ S Blair Hedges, Jaime
E Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf} {1956 my}
25. ^ S. Blair Hedges and
Sudhir Kumar, "The TimeTree of Life",
2009,
p117-118. http://www.timetree.org/book.
php
{1345 my}
26. ^ Emmanuelle J. Javaux,
Andrew H. Knoll and Malcolm Walter,
"Recognizing and Interpreting the
Fossils of Early Eukaryotes", Origins
of Life and Evolution of Biospheres,
Volume 33, Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{1000 my}
27. ^ Cédric
Berney and Jan Pawlowski, "A molecular
time-scale for eukaryote evolution
recalibrated with the continuous
microfossil record", Proc. R. Soc. B
August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{c820 my}
28. ^ S. Blair
Hedges and Sudhir Kumar, "The TimeTree
of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1628}
 
[1]
Unknown http://www.genome.gov/Images/pr
ess_photos/highres/85-300.jpg PD
source: http://upload.wikimedia.org/wiki
pedia/commons/thumb/6/6e/Oxytricha_trifa
llax.jpg/1024px-Oxytricha_trifallax.jpg


[2] Description English: Unknown
species of cilliate in the last stages
of mitosis (cytokinesis), with cleavage
furrow visible. Date Source
Own work Author
TheAlphaWolf CC
source: http://upload.wikimedia.org/wiki
pedia/commons/5/55/Unk.cilliate.jpg

1,150,000,000 YBN
16 17 18 19 20 21
86) (I think it's tough to say that the
more ancient Heterokonts, brown algae
(Phaeophyta), and golden algae
(Chrysophyta) are not also plants, and
the oldest living plants. Perhaps
glaucophyta are the first green plants,
or perhaps that should be reserved for
multicellular species.15 )
FOOTNOTES
1. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ Hwan Su Yoon, Jeremiah D. Hackett,
Claudia Ciniglia, Gabriele Pinto and
Debashish, "A Molecular Timeline for
the Origin of Photosynthetic
Eukaryotes", Molecular Biology and
Evolution, (2004).
4. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849; doi:10.1038/nrg929, (2002).
5. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
6. ^ Hwan Su Yoon, Jeremiah D. Hackett,
Claudia Ciniglia, Gabriele Pinto and
Debashish, "A Molecular Timeline for
the Origin of Photosynthetic
Eukaryotes", Molecular Biology and
Evolution, (2004).
7. ^ "Glaucophytes".
Wikipedia. Wikipedia, 2008.
http://en.wikipedia.org/wiki/Glaucophyte
s

8. ^ "Glaucophytes". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Glaucophyte
s

9. ^ "Glaucophytes". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Glaucophyte
s

10. ^ "Glaucophytes". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Glaucophyte
s

11. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P6064

12. ^ "Glaucophytes". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Glaucophyte
s

13. ^ "Glaucophytes". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Glaucophyte
s

14. ^ "Glaucophytes". Wikipedia.
Wikipedia, 2008.
http://en.wikipedia.org/wiki/Glaucophyte
s

15. ^ Ted Huntington.
16. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1150 mybn}
17. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
{c1290 mybn}
18. ^ S. Blair Hedges and Sudhir
Kumar, "The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1225 mybn}
19. ^ S. Blair Hedges, "The
Origin and Evolution of Model
Organisms", Nature Reviews Genetics 3,
838-849 (2002); doi:10.1038/nrg929,
(2002). (c1500my)
20. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (c1400)
21. ^ Hwan Su
Yoon, Jeremiah D. Hackett, Claudia
Ciniglia, Gabriele Pinto and Debashish,
"A Molecular Timeline for the Origin of
Photosynthetic Eukaryotes", Molecular
Biology and Evolution, (2004). (1558my)
 
[1] ? COPYRIGHTED
source: http://protist.i.hosei.ac.jp/PDB
3/PCD3711/htmls/86.html


[2] ? COPYRIGHTED
source: http://protist.i.hosei.ac.jp/PDB
/Images/Others/Glaucocystis/

1,150,000,000 YBN
38 39 40 41 42 43 44 45 46
188) Plant Green Algae evolves now
according to genetic comparison. Green
Algae is composed of the two Phlya
Chlorophyta (volvox, sea lettuce) and
Charophyta (Spirogyra).28 29 30 31 32

The first land plants most likely
evolved from green algae. 33

Cysts resembling modern
Micromonadophyceae cysts date from
about 1.2 billion years ago.34
Tasmanites formed the Permian "white
coal", or tasmanite, deposits of
Tasmania and similar deposits in
Alaska. Certain Ulvophyceae fossils
that date from about one billion years
ago are abundant in Paleozoic rocks.35


Knoll et al cite the earliest
recognized green algae fossil as
Proterocladus which dates to 750
million years ago36 37 .
FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
3. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
4. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b
5. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html

6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
8. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
9. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b
10. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html

11. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
12. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
13. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
14. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b
15. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html

16. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
17. ^ "algae." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 18 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/14828/algae
>.
18. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
19. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
20. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
21. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b
22. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html

23. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
24. ^ "algae." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 18 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/14828/algae
>.
25. ^ "algae." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 18 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/14828/algae
>.
26. ^ Knoll A, Summons R, Waldbauer J,
Zumberge J, "The Geological Succession
of Primary Producers in the Oceans",
in: Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p150.
27. ^
Butterfield, Knoll, Swett,
"Paleobiology of the Neoproterozoic
Svanbergfjellet Formation,
Spitsbergen", Lethaia, Volume 27, Issue
1, page 76, March
1994. http://onlinelibrary.wiley.com/do
i/10.1111/j.1502-3931.1994.tb01558.x/abs
tract

28. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
29. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
30. ^ Daniel
S. Heckman,1 David M. Geiser,2 Brooke
R. Eidell,1 Rebecca L. Stauffer,1
Natalie L. Kardos, "Molecular Evidence
for the Early Colonization of Land by
Fungi and Plants", Science 10 August
2001: Vol. 293. no. 5532, pp. 1129 -
1133 DOI: 10.1126/science.1061457,
(2001).
31. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b
32. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html

33. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
34. ^ "algae." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 18 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/14828/algae
>.
35. ^ "algae." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2011. Web. 18 Dec. 2011.
<http://www.britannica.com/EBchecked/topi
c/14828/algae
>.
36. ^ Knoll A, Summons R, Waldbauer J,
Zumberge J, "The Geological Succession
of Primary Producers in the Oceans",
in: Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p150.
37. ^
Butterfield, Knoll, Swett,
"Paleobiology of the Neoproterozoic
Svanbergfjellet Formation,
Spitsbergen", Lethaia, Volume 27, Issue
1, page 76, March
1994. http://onlinelibrary.wiley.com/do
i/10.1111/j.1502-3931.1994.tb01558.x/abs
tract

38. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1150
mybn}
39. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120. {1450mybn}
40. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1300mybn)
41. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(968mybn)
42. ^ Daniel S. Heckman,1 David M.
Geiser,2 Brooke R. Eidell,1 Rebecca
L. Stauffer,1 Natalie L. Kardos,
"Molecular Evidence for the Early
Colonization of Land by Fungi and
Plants", Science 10 August 2001: Vol.
293. no. 5532, pp. 1129 - 1133 DOI:
10.1126/science.1061457, (2001).
(1061?)
43. ^ M. J. Benton, "The Fossil Record
2", (London; New York: Chapman & Hall,
1993). fr2b (1650-800mybn)
44. ^
http://www.ucmp.berkeley.edu/greenalgae/
greenalgae.html
(1000my)
45. ^ Herman N,
"Organic World One Billion Years Ago",
Nauka, Leningrad, 1990.
46. ^ Knoll A,
Summons R, Waldbauer J, Zumberge J,
"The Geological Succession of Primary
Producers in the Oceans", in: Falkowski
P, Knoll A, editors. "Evolution of
primary producers in the sea.",
Elsevier; 2007, p150.
 
[1] Micrograph of Volvox aureus.
Copyright held by Dr. Ralf Wagner,
uploaded to German Wikipedia under
GFDL. Permission is granted to copy,
distribute and/or modify this document
under the terms of the GNU Free
Documentation License, Version 1.2 or
any later version published by the Free
Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no
Back-Cover Texts. Subject to
disclaimers.
source: http://en.wikipedia.org/wiki/Vol
vox


[2] Photo of green algal growth
(Enteromorpha sp.) on rocky areas of
the ocean intertidal shore, indicating
a nearby nutrient source (in this case
land runoff). Photographed by Eric
Guinther near Kahuku, O'ahu,
Hawai'i. GFDL Permission is granted
to copy, distribute and/or modify this
document under the terms of the GNU
Free Documentation License, Version 1.2
or any later version published by the
Free Software Foundation; with no
Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts Subject
to disclaimers
source: http://en.wikipedia.org/wiki/Ima
ge:Intertidal_greenalgae.jpg

1,100,000,000 YBN
13 14
75)
FOOTNOTES
1. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
4. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
5. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
6. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
7. ^ Murray Wittner, Louis M. Weiss,
"The microsporidia and
microsporidiosis", 1999,
p2. http://books.google.com/books?ei=Sq
NvT_O5JKbTiAKf8PDuAg

8. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
9. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
10. ^ "obligate." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 25
Mar. 2012.
http://www.answers.com/topic/obligate
11. ^ Murray Wittner, Louis M. Weiss,
"The microsporidia and
microsporidiosis", 1999,
p2. http://books.google.com/books?ei=Sq
NvT_O5JKbTiAKf8PDuAg

12. ^ Murray Wittner, Louis M. Weiss,
"The microsporidia and
microsporidiosis", 1999,
p130. http://books.google.com/books?ei=
SqNvT_O5JKbTiAKf8PDuAg

13. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849 (2002);
doi:10.1038/nrg929, (2002). (>1460mybn)
14. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (c1100mybn)

MORE INFO
[1]
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=93911

[2] Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). http://www.sciencemag.org/conte
nt/290/5493/972.full

 
[1] Sporoblast of the Microsporidium
Fibrillanosema crangonycis. Electron
micrograph taken by Leon White. GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Fibrillanosema_spore.jpg


[2] Spironema
multiciliatum Spironema:
Octosporoblastic sporogony producing
horseshoe-shaped monokaryotic spores in
sporophorous vesicles; monomorphic,
diplokaryotic and monokaryotic;
merogony - last generation merozoites
are diplokaryotic; sporogony - initial
division of the sporont nuclei is
meiotic as indicated by the occurrence
of synaptonemal complexes; spores are
horse-shoe-shaped, with swollen ends in
T. variabilis and have one elongate
nucleus; exospore with three layers,
endospore is of medium thickness;
polaroplast composed of two lamellar
parts, an anterior part of closely
packed lamellae and a posterior part of
wider compartments; polar tube is
isofilar and forms, in the posterior
quarter of the spore, 3-4 coils in a
single rank (T. variabilis) or 8-10
coils in a single rank (T. chironomi);
type species Toxoglugea vibrio in
adipose tissue of larvae of Ceratopogon
sp. (Diptera, Ceratopogonidae).
Spironema (spire-oh-knee-ma)
multiciliatum Klebs, 1893. Cells are
lanceolate, relatively flattened and
flexible. The cells have a spiral
groove, long kinetics and a tail, which
tapers posteriorly, and are about 15 -
21 microns without the tail. The
nucleus is located anteriorly or near
the centre of the cell. When the cells
are squashed, the cells are more
flexible. Food materials are seen under
the cell surface. Rarely observed.
This picture was taken by Won Je Lee
using conventional photographic film
using a Zeiss Axiophot microscope of
material collected in marine sediments
of Botany Bay (Sydney, Australia). The
image description refers to material
from Botany Bay. NONCOMMERCIAL USE
source: http://microscope.mbl.edu/script
s/microscope.php?func=imgDetail&imageID=
3928

1,100,000,000 YBN
7 8 9
6284)
FOOTNOTES
1. ^ Emmanuelle J. Javaux, Andrew H.
Knoll and Malcolm Walter, "Recognizing
and Interpreting the Fossils of Early
Eukaryotes", Origins of Life and
Evolution of Biospheres, Volume 33,
Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/

2. ^ Pratt, L. M., Summons, R. E. and
Hieshima, G. B.: 1991, Sterane and
Triterpane Biomarkers in
the Precambrian Nonesuch Formation,
North American Midcontinent Rift,
Geochem. Cosmochim. Acta 55,
911–916.
3. ^ Emmanuelle J. Javaux, Andrew H.
Knoll and Malcolm Walter, "Recognizing
and Interpreting the Fossils of Early
Eukaryotes", Origins of Life and
Evolution of Biospheres, Volume 33,
Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/

4. ^ Pratt, L. M., Summons, R. E. and
Hieshima, G. B.: 1991, Sterane and
Triterpane Biomarkers in
the Precambrian Nonesuch Formation,
North American Midcontinent Rift,
Geochem. Cosmochim. Acta 55,
911–916.
5. ^ Emmanuelle J. Javaux, Andrew H.
Knoll and Malcolm Walter, "Recognizing
and Interpreting the Fossils of Early
Eukaryotes", Origins of Life and
Evolution of Biospheres, Volume 33,
Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/

6. ^ Pratt, L. M., Summons, R. E. and
Hieshima, G. B.: 1991, Sterane and
Triterpane Biomarkers in
the Precambrian Nonesuch Formation,
North American Midcontinent Rift,
Geochem. Cosmochim. Acta 55,
911–916.
7. ^ Emmanuelle J. Javaux, Andrew H.
Knoll and Malcolm Walter, "Recognizing
and Interpreting the Fossils of Early
Eukaryotes", Origins of Life and
Evolution of Biospheres, Volume 33,
Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{1100 mybn}
8. ^ A. H. Knoll,
E. J. Javaux, D. Hewitt and P. Cohen,
"Eukaryotic Organisms in Proterozoic
Oceans", Philosophical Transactions:
Biological Sciences , Vol. 361, No.
1470, Major Steps in Cell Evolution:
Palaeontological, Molecular and
Cellular Evidence of Their Timing and
Global Effects (Jun. 29, 2006), pp.
1023-1038 http://www.jstor.org/stable/2
0209698
{1100 mybn}
9. ^ Moldowan, J. Michael
et al. “Chemostratigraphic
reconstruction of biofacies: Molecular
evidence linking cyst-forming
dinoflagellates with pre-Triassic
ancestors.” Geology 24.2 (1996): 159
-162.
http://geology.geoscienceworld.org/con
tent/24/2/159.abstract

AND http://geology.gsapubs.org/content/
24/2/159.full.pdf {into the
Proterozoic) >542 mybn}

MORE INFO
[1] Delwiche, Charles F., "The
Origin and Evolution of
Dinoflagellates", in: Falkowski P,
Knoll A, editors. "Evolution of primary
producers in the sea.", Elsevier; 2007
[2]
J.J. Brocks, R.E. Summons, 8.03 -
Sedimentary Hydrocarbons, Biomarkers
for Early Life, In: Editors-in-Chief:
Heinrich D. Holland and Karl K.
Turekian, Editor(s)-in-Chief, Treatise
on Geochemistry, Pergamon, Oxford,
2003, Pages 63-115, ISBN 9780080437514,
10.1016/B0-08-043751-6/08127-5. (http:/
/www.sciencedirect.com/science/article/p
ii/B0080437516081275)

[3] J. Michael Moldowan, Nina M.
Talyzina, "Biogeochemical Evidence for
Dinoflagellate Ancestors in the Early
Cambrian", Science, Vol 281, Issue
5380, 1168-1170 , 21 August 1998
 
[1] Part of figure 2 from: Moldowan,
J. Michael et al. “Chemostratigraphic
reconstruction of biofacies: Molecular
evidence linking cyst-forming
dinoflagellates with pre-Triassic
ancestors.” Geology 24.2 (1996): 159
-162.
http://geology.geoscienceworld.org/con
tent/24/2/159.abstract
AND http://geology.gsapubs.org/content/
24/2/159.full.pdf COPYRIGHTED
source: http://geology.gsapubs.org/conte
nt/24/2/159.full.pdf

1,080,000,000 YBN
42 43 44 45 46
87) Excavate Discicristates
{DiSKIKriSTATS}, ancestor of protists
which have mitochondria with discoidal
shaped cristae (includes euglenids,
leishmanias {lEsmaNEuZ31 },
trypanosomes {TriPaNiSOMZ32 },
kinetoplastids {KiNeTuPlaSTiDZ33 }, and
acrasid {oKrASiD34 } slime molds).35
36 37 38

The discicristates include
photosynthetic flagellates, such as the
green Euglena, and parasitic ones, such
as Trypanosoma, which causes sleeping
sickness. There are also the acrasid
slime molds, which are not closely
related to the amoebozoan dictyostelid
and plasmodial slime molds.39 40

Some euglenids exhibit colonialism and
have a cell covering ("pellicle").

In eukaryote mitochondria there are
three kinds of christae (the inner
membrane protrustions of mitochondria):
discoidal, tubular, and flattened.
Discoidal are found in kinetoplasts and
euglynoids, tubular christae are found
in diatoms, crysophyte algae, and
apicomplexans, and Flattened cristae
are found in opisthokonts (animals and
fungi) and both green and red algae.41

FOOTNOTES
1. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ Russell F. Doolittle, Da-Fei Feng,
Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
4. ^ "leishmanias."
Dictionary.com Unabridged. Random
House, Inc. 08 Jun. 2012.
http://dictionary.reference.com/browse/l
eishmanias>.
5. ^ "trypanosome." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/t
rypanosome>.
6. ^
http://howjsay.com/index.php?word=kineto
plastid&submit=Submit

7. ^
http://www.howjsay.com/index.php?word=ac
rasiomycetes&submit=Submit

8. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
9. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
10. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
11. ^ Baldauf, "An overview of
the phylogeny and diversity of
eukaryotes", Journal of Systematics and
Evolution 46 (3): 263–273
(2008). http://www.plantsystematics.com
/qikan/manage/wenzhang/jse08060.pdf

12. ^ "leishmanias." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/l
eishmanias>.
13. ^ "trypanosome." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/t
rypanosome>.
14. ^
http://howjsay.com/index.php?word=kineto
plastid&submit=Submit

15. ^
http://www.howjsay.com/index.php?word=ac
rasiomycetes&submit=Submit

16. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
17. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
18. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
19. ^ Baldauf, "An overview of
the phylogeny and diversity of
eukaryotes", Journal of Systematics and
Evolution 46 (3): 263–273
(2008). http://www.plantsystematics.com
/qikan/manage/wenzhang/jse08060.pdf

20. ^ "leishmanias." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/l
eishmanias>.
21. ^ "trypanosome." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/t
rypanosome>.
22. ^
http://howjsay.com/index.php?word=kineto
plastid&submit=Submit

23. ^
http://www.howjsay.com/index.php?word=ac
rasiomycetes&submit=Submit

24. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
25. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
26. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
27. ^ Baldauf, "An overview of
the phylogeny and diversity of
eukaryotes", Journal of Systematics and
Evolution 46 (3): 263–273
(2008). http://www.plantsystematics.com
/qikan/manage/wenzhang/jse08060.pdf

28. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p541.
29. ^ Baldauf, "An
overview of the phylogeny and diversity
of eukaryotes", Journal of Systematics
and Evolution 46 (3): 263–273
(2008). http://www.plantsystematics.com
/qikan/manage/wenzhang/jse08060.pdf

30. ^ Kwang W. Jeon, "International
Review Of Cytology: A Survey of Cell
Biology", 2006,
p153. http://books.google.com/books?id=
cAdk7-cQ1NkC&pg=PA153

31. ^ "leishmanias." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/l
eishmanias>.
32. ^ "trypanosome." Dictionary.com
Unabridged. Random House, Inc. 08 Jun.
2012.
http://dictionary.reference.com/browse/t
rypanosome>.
33. ^
http://howjsay.com/index.php?word=kineto
plastid&submit=Submit

34. ^
http://www.howjsay.com/index.php?word=ac
rasiomycetes&submit=Submit

35. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
36. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
37. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
38. ^ Baldauf, "An overview of
the phylogeny and diversity of
eukaryotes", Journal of Systematics and
Evolution 46 (3): 263–273
(2008). http://www.plantsystematics.com
/qikan/manage/wenzhang/jse08060.pdf

39. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p541.
40. ^ Baldauf, "An
overview of the phylogeny and diversity
of eukaryotes", Journal of Systematics
and Evolution 46 (3): 263–273
(2008). http://www.plantsystematics.com
/qikan/manage/wenzhang/jse08060.pdf

41. ^ Kwang W. Jeon, "International
Review Of Cytology: A Survey of Cell
Biology", 2006,
p153. http://books.google.com/books?id=
cAdk7-cQ1NkC&pg=PA153

42. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1080
mybn}
43. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
{1956 mybn}
44. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1999 mybn}
45. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (1600mybn)
46. ^ Russell
F. Doolittle, Da-Fei Feng, Simon Tsang,
Glen Cho, Elizabeth Little,
"Determining Divergence Times of the
Major Kingdoms of Living Organisms with
a Protein Clock", Science, (1996).
(1800-1900 for eukaryote/prokaryote
separation)

MORE INFO
[1]
http://biology.kenyon.edu/Microbial_Bior
ealm/eukaryotes/euglenozoa/euglenozoa.ht
m

[2]
http://www.sirinet.net/~jgjohnso/apbio30
.html

 
[1] euglena
source: http://www.fcps.k12.va.us/Stratf
ordLandingES/Ecology/mpages/euglena.htm


[2] euglena
source: http://protist.i.hosei.ac.jp/PDB
/Images/Mastigophora/Euglena/genus1L.jpg

1,080,000,000 YBN
34 35 36 37
97) A eukaryote eye evolves; the first
three-dimensional response to light.25
26 27

Eyes evolve at least eight times
independently in eukaryotes.28

The earliest eye probably evolves from
a plastid. The first proto eye is a
light sensitive area in a unicellular
eukaryote.29 30

Eukaryotes are the first organisms to
evolve the ability to follow light
direction in three dimensions in open
water.31

Halophilic archaebacteria, such as
Halobacterium salinarum, use sensory
rhodopsins (SRs) for phototaxis
(positive or negative movement along a
light gradient or vector), and some
cyanobacteria (e.g. Anabaena,
Synechocystis) can slowly orient along
a light vector.32

Eukaryotes are the first organisms to
evolve the ability to follow light
direction in three dimensions in open
water. The eukaryotic sensory
integration, sensory processing and the
speed and mechanics of tactic responses
is fundamentally different from that
found in prokaryotes. Both
single-celled and multi-cellular
eukaryotic phototactic organisms have a
fixed shape, are polarized, swim in a
spiral and use cilia for swimming and
phototactic steering. Three-dimensional
phototaxis can be found in five out of
the six eukaryotic major groups
(opisthokonts, Amoebozoa, plants,
chromalveolates, excavates,
rhizaria).33
FOOTNOTES
1. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

2. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

3. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

4. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

5. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

6. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

7. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

8. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

9. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

10. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

11. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

12. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

13. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

14. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

15. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

16. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

17. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

18. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

19. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

20. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

21. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

22. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

23. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

24. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

25. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

26. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

27. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

28. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

29. ^
http://www.sidwell.edu/us/science/vlb5/L
abs/Classification_Lab/Eukarya/Protista/
Euglenozoa/

30. ^ THOMAS CAVALIER-SMITH, "Economy,
Speed and Size Matter: Evolutionary
Forces Driving Nuclear Genome
Miniaturization and Expansion", *
Oxford Journals * Life Sciences
* Annals of Botany * Volume 95,
Number 1 *, (2005).
http://aob.oxfordjournals.org/content/
95/1/147.abstract

31. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

32. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

33. ^ Jékely, Gáspár. "Evolution of
phototaxis." Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short

34. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119.
35. ^ Yoon, Hwan
Su et al. “A Molecular Timeline for
the Origin of Photosynthetic
Eukaryotes.” Molecular Biology and
Evolution 21.5 (2004): 809 -818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract
{guess based on
earliest secondary plastid 1274 my and
euglena at 1410 mybn}
36. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
{guess based on earliest secondary
plastid 1274 my and euglena at 1410
mybn}
37. ^ my own estimate based on where
euglenozoa genetically appear to evolve
{guess based on earliest secondary
plastid 1274 my and euglena at 1410
mybn}

MORE INFO
[1] Peter Hegemann, "Algal
Sensory Photoreceptors", Annual Review
of Plant Biology, Vol. 59: 167 -189
(Volume publication date June 2008)
http://www.annualreviews.org/doi/full/
10.1146/annurev.arplant.59.032607.092847
%40recept.2009.1.issue-1

[2] Trevor D. Lamb, Detlev Arendt, and
Shaun P. Collin, "The evolution of
phototransduction and eyes", Phil.
Trans. R. Soc. B October 12, 2009
364:2791-2793;
doi:10.1098/rstb.2009.0106 http://rstb.
royalsocietypublishing.org/content/364/1
531/2791.full

[3] Kreimer, G. (2009) The green algal
eyespot apparatus: a primordial visual
system and more? Current Genetics
55:19-43 doi:10.007/s00294-008-0224-8
PMID
19107486 http://www.springerlink.com/co
ntent/v54v124mxg52r091/

 
[1] Adapted from: Euglena is a
photosynthetic euglenoid with at least
150 described species. The cells are
cylindrical with a rounded anterior and
tapered posterior. The chloroplasts are
well-developed, bright green, and
sometimes have pyrenoids. ... Euglena
is a photosynthetic euglenoid with at
least 150 described species. The cells
are cylindrical with a rounded anterior
and tapered posterior. The chloroplasts
are well-developed, bright green, and
sometimes have pyrenoids. They are
often discoidal in shape but can also
be ovate, lobate, elongate, U-shaped,
or ribbon-shaped. Some researchers use
the structure and position of the
chloroplasts to divide the group into
three subgenera. Even though they are
able to photosynthesize, Euglena cells
also have a phagotrophic ingestion
apparatus. Euglena has one long,
protruding flagellum and a shorter
flagellum that is not usually
visible. The euglenoids can glide
and swim using their flagella, or can
ooze along a substrate with an
undulating, shape-changing, contraction
motion called metaboly. The cytoplasm
of Euglena and other euglenoids
contains many paramylon starch storage
granules. The euglenoid cells are
covered by a pellicle composed of
ribbonlike, woven strips of
proteinaceous material that cover the
cell in a helical arrangement from apex
to posterior. Freshwater euglenoids
have a contractile vacuole. Euglenoids
sense light using a red pigmented
eyespot or stigma and the paraflagellar
body located at the base of the
emergent flagella. The cytoplasm of
Euglena and other euglenoids contains
many paramylon starch storage granules.
The euglenoid cells are covered by a
pellicle composed of ribbonlike, woven
strips of proteinaceous material that
cover the cell in a helical arrangement
from apex to posterior. Freshwater
euglenoids have a contractile vacuole.
Euglenoids sense light using a red
pigmented eyespot or stigma and the
paraflagellar body located at the base
of the emergent flagella. UNKNOWN
source: http://silicasecchidisk.conncoll
.edu/Pics/Other%20Algae/Other_jpegs/Eugl
ena_Key225.jpg


[2] Figure 1. The distribution of
three-dimensional phototaxis in the
tree of eukaryotes. Red arrows indicate
the likely point of origin of
phototaxis in a given group. Question
marks indicate uncertainties regarding
independent or common origin. Figure
1 from: Jékely, Gáspár. ''Evolution
of phototaxis.'' Philosophical
Transactions of the Royal Society B:
Biological Sciences 364 (October
2009):
2795–2808. http://rstb.royalsocietypu
blishing.org/content/364/1531/2795.short
COPYRIGHTED
source: http://rstb.royalsocietypublishi
ng.org/content/364/1531/2795/F1.large.jp
g

1,080,000,000 YBN
5 6 7 8 9
203)
FOOTNOTES
1. ^ "colonial." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02
Jun. 2012.
http://www.answers.com/topic/colonial
2. ^ "colonial." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02
Jun. 2012.
http://www.answers.com/topic/colonial
3. ^ "colonial." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 02
Jun. 2012.
http://www.answers.com/topic/colonial
4. ^ Nicholas H. Barton, "Evolution",
2007,
p225-226. http://books.google.com/books
?id=mMDFQ32oMI8C&pg=PA225

5. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p119. {1080
mybn}
6. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
{1956 mybn}
7. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1999 mybn}
8. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (1600mybn)
9. ^ Russell F.
Doolittle, Da-Fei Feng, Simon Tsang,
Glen Cho, Elizabeth Little,
"Determining Divergence Times of the
Major Kingdoms of Living Organisms with
a Protein Clock", Science, (1996).
(1800-1900 for eukaryote/prokaryote
separation)

MORE INFO
[1]
http://biology.kenyon.edu/Microbial_Bior
ealm/eukaryotes/euglenozoa/euglenozoa.ht
m

[2]
http://www.sirinet.net/~jgjohnso/apbio30
.html

 
[1] [t Note that this Chrysophytes
{golden algae} do not evolve
genetically until much later - but I
can't find colonial euglinas or
kinetoplasts- dinobryon look very
similar to euglenas however, even with
a red eyespot- which implies a close
relation.] [1] Dinobryon, a colony of
Chrysophytes showing flagella and red
eyespots UNKNOWN
source: http://www.microscopy-uk.org.uk/
mag//imagsmall/Dinobryonb.jpg


[2] [t Note that this CHrysophytes
{golden algae} do not evolve
genetically until much later - but I
can't find colonial euglinas or
kinetoplasts] [2] golden algae colony
(synura) Scanning EM showing the
colony of cells covered with scales By
Joel Mancuso UNKNOWN
source: http://farm1.staticflickr.com/38
/110623789_7d189c795b_b.jpg

1,050,000,000 YBN
21 22 23 24 25 26 27 28 29
169)
FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

2. ^
http://www.howjsay.com/index.php?word=oo
mycota&submit=Submit

3. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
4. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php

5. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

6. ^
http://www.howjsay.com/index.php?word=oo
mycota&submit=Submit

7. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
8. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php

9. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

10. ^
http://www.howjsay.com/index.php?word=oo
mycota&submit=Submit

11. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
12. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php

13. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
14. ^ Brusca and Brusca,
"Invertebrates", 2003, p153.
15. ^
http://www.howjsay.com/index.php?word=st
ramenopiles

16. ^
http://www.howjsay.com/index.php?word=oo
mycota&submit=Submit

17. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
18. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php

19. ^ Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.
20. ^ Brusca and Brusca,
"Invertebrates", 2003, p153.
21. ^ Yoon, Hwan
Su et al. “A Molecular Timeline for
the Origin of Photosynthetic
Eukaryotes.” Molecular Biology and
Evolution 21.5 (2004): 809 -818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract
{1050 mybn}
22. ^
Hackett JD, Yoon HS, Butterfield NJ,
Sanderson MJ, Bhattacharya D, "Plastid
endosymbiosis: Sources and timing of
the major events.", in: Falkowski P,
Knoll A, editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p119. {1180 mybn}
23. ^ Hackett JD, Yoon HS,
Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007,
p120. {1480my}
24. ^ S. Blair Hedges and Sudhir
Kumar, "The TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1345 my}
25. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf} {1956my} {Alveolates and Plant
split)1956my}
26. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). {1600 my}
{Chromalveolates)1600 my}
27. ^ Cédric
Berney and Jan Pawlowski, "A molecular
time-scale for eukaryote evolution
recalibrated with the continuous
microfossil record", Proc. R. Soc. B
August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short

{Berney_Eukaryote_phylogeny_2006.pdf}
{c775my} {c754my}
28. ^ Emmanuelle J. Javaux,
Andrew H. Knoll and Malcolm Walter,
"Recognizing and Interpreting the
Fossils of Early Eukaryotes", Origins
of Life and Evolution of Biospheres,
Volume 33, Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{c1000my}
29. ^ Emmanuel J. P.
Douzery, Elizabeth A. Snell, Eric
Bapteste, Frédéric Delsuc, and Hervé
Philippe, "The timing of eukaryotic
evolution: Does a relaxed molecular
clock reconcile proteins and fossils?",
Proc Natl Acad Sci U S A. 2004 October
26; 101(43):
15386–15391. http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC524432/?report=abstr
act
{872 my}
 
[1] Phylum Stramenopiles COPYRIGHTED
source: Brusca and Brusca,
"Invertebrates", Second Edition, 2003,
p153-155.


[2] S. Blair Hedges and Sudhir Kumar,
''The TimeTree of Life'', 2009,
p117-118. http://www.timetree.org/book.
php COPYRIGHTED
source: http://www.timetree.org/book.php

1,050,000,000 YBN
297) Diplontic life cycle; organism is
predominantly diploid, mitosis in the
haploid phase does not occur.7 8
FOOTNO
TES
1. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
2. ^ Mark Kirkpatrick,
"The evolution of haploid-diploid life
cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

3. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
4. ^ Mark Kirkpatrick,
"The evolution of haploid-diploid life
cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

5. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
6. ^ Mark Kirkpatrick,
"The evolution of haploid-diploid life
cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

7. ^ John Ringo, "Fundamental
Genetics", 2004, p201.
8. ^ Mark Kirkpatrick,
"The evolution of haploid-diploid life
cycles", 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10

 
[1] Gametic Meiosis. GNU
source: http://en.wikipedia.org/wiki/Ima
ge:Gametic_meiosis.png


[2] Mark Kirkpatrick, ''The evolution
of haploid-diploid life cycles'', 1994,
p10. http://books.google.com/books?id=X
sgoLnXLIswC&pg=PA10 COPYRIGHTED
source: http://books.google.com/books?id
=XsgoLnXLIswC&pg=PA10

1,050,000,000 YBN
33 34 35 36 37 38 39 40 41 42
304)
FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=co
ccolithophores&submit=Submit

2. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
3. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
4. ^ Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000).has heterkonts before ciliophora
and apicomplexa branch
5. ^
http://www.howjsay.com/index.php?word=co
ccolithophores&submit=Submit

6. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
7. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
8. ^ Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000).has heterkonts before ciliophora
and apicomplexa branch
9. ^
http://www.howjsay.com/index.php?word=co
ccolithophores&submit=Submit

10. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
11. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
12. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000).has heterkonts before ciliophora
and apicomplexa branch
13. ^
http://www.ucmp.berkeley.edu/chromista/p
rymnesiophyta.html

14. ^
http://www.geosociety.org/science/timesc
ale/

15. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
16. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
17. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000).has heterkonts before ciliophora
and apicomplexa branch
18. ^
http://www.ucmp.berkeley.edu/chromista/p
rymnesiophyta.html

19. ^
http://www.geosociety.org/science/timesc
ale/

20. ^
http://www.life.umd.edu/labs/delwiche/PS
life/lectures/Haptophyta.html

21. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P10520

22. ^ empty
23. ^ empty
24. ^ empty
25. ^ empty
26. ^ empty
27. ^
http://biology.kenyon.edu/Microbial_Bior
ealm/eukaryotes/emiliania/emiliania.htm

28. ^ Ted Huntington.
29. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P10520

30. ^
http://microscope.mbl.edu/scripts/micros
cope.php?func=imgDetail&imageID=2627

31. ^ Ted Huntington.
32. ^
http://www.ucmp.berkeley.edu/chromista/p
rymnesiophyta.html
Larsen, A. (1999).
Prymnesium parvum and P. patelliferum
(Haptophyta) - one species. Phycologia
38: 541-543
33. ^ Yoon, Hwan Su et al. “A
Molecular Timeline for the Origin of
Photosynthetic Eukaryotes.” Molecular
Biology and Evolution 21.5 (2004): 809
-818.
Print. http://mbe.oxfordjournals.org/co
ntent/21/5/809.abstract
{c1050 mybn}
34. ^
Cédric Berney and Jan Pawlowski, "A
molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{920 mybn}
35. ^ S. Blair
Hedges and Sudhir Kumar, "The TimeTree
of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{genetic)1382 mybn}
36. ^ De Vargas,
Aubry, Probert, Young, "Origin and
Evolution of Cocolithophores: From
Coastal Hunters to Oceanic Farmers",
Chapter 12, p251. in: Paul G.
Falkowski, Andrew H. Knoll, "Evolution
of primary producers in the sea",
2007. http://books.google.com/books?id=
5tRSAr1JMhwC
{DNA)1900mybn}
{genetic)1900mybn}
37. ^ Linda Medlin, et al, "Phylogenic
relationships of the 'golden algae'
(haptophytes, heterokont chromophytes)
and their plastids", Plant Systematics
and Evolution (Supplement), v11, 1997,
p187-219. http://epic.awi.de/2100/1/Med
1997c.pdf
{DNA)1750 mybn} {genetic)1750
mybn}
38. ^
http://www.ucmp.berkeley.edu/chromista/p
rymnesiophyta.html
{possible fossil)
318mybn}
39. ^ Cédric Berney and Jan Pawlowski,
"A molecular time-scale for eukaryote
evolution recalibrated with the
continuous microfossil record", Proc.
R. Soc. B August 7, 2006 273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{genetic) 920 mybn}
40. ^
http://www.geosociety.org/science/timesc
ale/
{possible fossil) 318mybn}
41. ^
http://www.ucmp.berkeley.edu/chromista/p
rymnesiophyta.html
{certain fossil)
201mybn}
42. ^
http://www.geosociety.org/science/timesc
ale/
{certain fossil) 201mybn}

MORE INFO
[1] S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1973mybn)
[2] Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1600mybn)
[3] Sandra L. Baldauf,
A. J. Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). (has heterkonts before
ciliophora and apicomplexa branch)
 
[1] Fig. 1. A consensus phylogeny of
eukaryotes. The vast majority of
characterized eukaryotes, with the
notable exception of major subgroups of
amoebae, can now be assigned to one of
eight major groups. Opisthokonts (basal
flagellum) have a single basal
flagellum on reproductive cells and
flat mitochondrial cristae (most
eukaryotes have tubular ones).
Eukaryotic photosynthesis originated in
Plants; theirs are the only plastids
with just two outer membranes.
Heterokonts (different flagellae) have
a unique flagellum decorated with
hollow tripartite hairs (stramenopiles)
and, usually, a second plain one.
Cercozoans are amoebae with filose
pseudopodia, often living with in tests
(hard outer shells), some very
elaborate (foraminiferans). Amoebozoa
are mostly naked amoebae (lacking
tests), often with lobose pseudopodia
for at least part of their life cycle.
Alveolates have systems of cortical
alveoli directly beneath their plasma
membranes. Discicristates have discoid
mitochondrial cristae and, in some
cases, a deep (excavated) ventral
feeding groove. Amitochondrial
excavates lack substantial molecular
phylogenetic support, but most have an
excavated ventral feeding groove, and
all lack mitochondria. The tree shown
is based on a consensus of molecular
(1-4) and ultrastructural (16, 17) data
and includes a rough indication of new
ciPCR ''taxa'' (broken black lines)
(7-11). An asterisk preceding the taxon
name indicates probable paraphyletic
group
source: http://www.sciencemag.org/cgi/co
ntent/full/300/5626/1703


[2] Emiliania huxleyi, a
coccolithophore. Photo courtesy Dr.
Markus Geisen - photographer, and The
Natural History Museum. PD
source: http://en.wikipedia.org/wiki/Ima
ge:Emiliania_huxleyi_3.jpg

1,040,000,000 YBN
38 39 40 41 42
313) The ciliophora, apicomplexa and
dinoflagelatta are under the title
alveolata because they have an alveolar
membrane system, which contains
flattened membrane-bound sacs (alveoli)
lying beneath the outer cell
membrane.28

In dinoflagellates, the chromosomes are
always visible and do not condense
prior to mitosis. The chromosomes are
attached to the nuclear envelope, which
persists during mitosis.29

The main method of reproduction of the
dinoflagellates is by longitudinal cell
division, with each daughter cell
receiving one of the flagella and a
portion of the theca and then
constructing the missing parts in a
very intricate sequence. Some nonmotile
species form zoospores, which may be
colonial. A number of species reproduce
sexually, mostly by isogamy, but a few
species reproduce by anisogamy.30

Dinoflagellate zygotes are similar to
some acritarchs (early eukaryote
fossils).31

The earliest undisputed, structural
fossils of dinoflagellates are cysts
dating from the Triassic (251-201 Ma32
), with a few likely Permian records.
Some Silurian (c410 Ma) fossils have
been attributed to the group but the
relation is uncertain. Acritarchs are
microfossils with no known affinity.
Some people have tried to link
acritarchs with dinoflagellates. Some
later acritarchs from the Jurassic and
Cretaceous, have been shown to be
dinoflagellate cysts and so are no
longer treated like acritarchs. A
correlation has been noted between the
presence of triaromatic dinosteroids
and acritarch abundance, implying that
these acritarchs may be the cysts of
ancestral dinoflagellates.33

If acritachs are dinoflagellates, then
dinoflagellates may date back to at
least 1.8 billion years34 and perhaps
even 3.5 billion years to the earliest
known acritarchs35 .
Dinosterane,
derived from dinosterol produced by
dinoflagellates, occurs in the 1.1 Ga
Nonesuch Formation, in the United
States.36 37
FOOTNOTES
1. ^
http://howjsay.com/index.php?word=dinofl
agellates&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). has heterkonts before
ciliophora and apicomplexa branch
4. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
5. ^
http://howjsay.com/index.php?word=dinofl
agellates&submit=Submit

6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). has heterkonts before
ciliophora and apicomplexa branch
8. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
9. ^
http://howjsay.com/index.php?word=dinofl
agellates&submit=Submit

10. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
11. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). has heterkonts before
ciliophora and apicomplexa branch
12. ^ S
Blair Hedges, Jaime E Blair, Maria L
Venturi and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
13. ^ "dinoflagellate." Britannica
Concise Encyclopedia. Encyclopædia
Britannica, Inc., 1994-2010.
Answers.com 26 Mar. 2012.
http://www.answers.com/topic/dinoflagell
ate

14. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
15. ^
http://howjsay.com/index.php?word=dinofl
agellates&submit=Submit

16. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
17. ^ Sandra L. Baldauf, A. J.
Roger, I. Wenk-Siefert, W. F.
Doolittle, "A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data", Science, Vol 290, num 5493, p
972, (2000). has heterkonts before
ciliophora and apicomplexa branch
18. ^ S
Blair Hedges, Jaime E Blair, Maria L
Venturi and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004). http://www.biomedcentral.com/14
71-2148/4/2
{Hedges_Venturi_Shoe_200311
10.pdf}
19. ^ "dinoflagellate." Britannica
Concise Encyclopedia. Encyclopædia
Britannica, Inc., 1994-2010.
Answers.com 26 Mar. 2012.
http://www.answers.com/topic/dinoflagell
ate

20. ^ "coenocyte." The American
Heritage® Dictionary of the English
Language, Fourth Edition. Houghton
Mifflin Company, 2004. Answers.com 23
Dec. 2011.
http://www.answers.com/topic/coenocyte
21. ^ Ted Huntington.
22. ^ Delwiche, Charles F.,
"The Origin and Evolution of
Dinoflagellates", in: Falkowski P,
Knoll A, editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
23. ^
Emmanuelle J. Javaux, Andrew H. Knoll
and Malcolm Walter, "Recognizing and
Interpreting the Fossils of Early
Eukaryotes", Origins of Life and
Evolution of Biospheres, Volume 33,
Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{Dinosterane molecular
fossils)1100 my}
24. ^ Pratt, L. M.,
Summons, R. E. and Hieshima, G. B.:
1991, Sterane and Triterpane Biomarkers
in the Precambrian Nonesuch Formation,
North American Midcontinent Rift,
Geochem. Cosmochim. Acta 55,
911–916.
25. ^
http://www.google.com/url?sa=t&rct=j&q=&
esrc=s&source=web&cd=2&ved=0CEMQFjAB&url
=http%3A%2F%2Fwww.geosociety.org%2Fscien
ce%2Ftimescale%2F&ei=Lx_1TuuwFqn8iQLx45S
LDQ&usg=AFQjCNGk2_p_MG74VBwM9lPw388A8dT7
mg&sig2=nV7SC9_xJtVzK8NrVHRU3Q

26. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
27. ^ Hackett JD, Yoon
HS, Butterfield NJ, Sanderson MJ,
Bhattacharya D, "Plastid endosymbiosis:
Sources and timing of the major
events.", in: Falkowski P, Knoll A,
editors. "Evolution of primary
producers in the sea.", Elsevier; 2007.
28. ^
Brusca and Brusca, "Invertebrates",
Second Edition, 2003, p135.
29. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P8047&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

30. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P8047&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

31. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P8047&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

32. ^
http://www.google.com/url?sa=t&rct=j&q=&
esrc=s&source=web&cd=2&ved=0CEMQFjAB&url
=http%3A%2F%2Fwww.geosociety.org%2Fscien
ce%2Ftimescale%2F&ei=Lx_1TuuwFqn8iQLx45S
LDQ&usg=AFQjCNGk2_p_MG74VBwM9lPw388A8dT7
mg&sig2=nV7SC9_xJtVzK8NrVHRU3Q

33. ^ Delwiche, Charles F., "The Origin
and Evolution of Dinoflagellates", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007.
34. ^ A. H. Knoll, E.
J. Javaux, D. Hewitt and P. Cohen,
"Eukaryotic Organisms in Proterozoic
Oceans", Philosophical Transactions:
Biological Sciences , Vol. 361, No.
1470, Major Steps in Cell Evolution:
Palaeontological, Molecular and
Cellular Evidence of Their Timing and
Global Effects (Jun. 29, 2006), pp.
1023-1038 http://www.jstor.org/stable/2
0209698
{1.8 bybn}
35. ^ Javaux, Emmanuelle
J., Craig P. Marshall, and Andrey
Bekker. “Organic-walled microfossils
in 3.2-billion-year-old shallow-marine
siliciclastic deposits.” Nature
463.7283 (2010):
934-938. http://www.nature.com/nature/j
ournal/v463/n7283/full/nature08793.html

{3.2 bybn}
36. ^ Emmanuelle J. Javaux, Andrew
H. Knoll and Malcolm Walter,
"Recognizing and Interpreting the
Fossils of Early Eukaryotes", Origins
of Life and Evolution of Biospheres,
Volume 33, Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{Dinosterane molecular
fossils)1100 my}
37. ^ Pratt, L. M.,
Summons, R. E. and Hieshima, G. B.:
1991, Sterane and Triterpane Biomarkers
in the Precambrian Nonesuch Formation,
North American Midcontinent Rift,
Geochem. Cosmochim. Acta 55,
911–916.
38. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007. {DNA)1040 mybn}
39. ^
Emmanuelle J. Javaux, Andrew H. Knoll
and Malcolm Walter, "Recognizing and
Interpreting the Fossils of Early
Eukaryotes", Origins of Life and
Evolution of Biospheres, Volume 33,
Number 1, 75-94, DOI:
10.1023/A:1023992712071 http://www.spri
ngerlink.com/content/j1nn04342607n57m/ex
port-citation/
{Dinosterane molecular
fossils)1100 my}
40. ^ A. H. Knoll, E. J.
Javaux, D. Hewitt and P. Cohen,
"Eukaryotic Organisms in Proterozoic
Oceans", Philosophical Transactions:
Biological Sciences , Vol. 361, No.
1470, Major Steps in Cell Evolution:
Palaeontological, Molecular and
Cellular Evidence of Their Timing and
Global Effects (Jun. 29, 2006), pp.
1023-1038 http://www.jstor.org/stable/2
0209698
{1.8 bybn} {Dinosterane
molecular fossils)1100 my}
41. ^ S. Blair
Hedges and Sudhir Kumar, "The TimeTree
of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{940 mybn}
42. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{430 my}

MORE INFO
[1] Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004). (1973mybn)
[2] Sandra L.
Baldauf, A. J. Roger, I. Wenk-Siefert,
W. F. Doolittle, "A Kingdom-Level
Phylogeny of Eukaryotes Based on
Combined Protein Data", Science, Vol
290, num 5493, p 972, (2000). has
heterkonts before ciliophora and
apicomplexa branch (1600mybn)
[3] Pratt, L. M.,
Summons, R. E. and Hieshima, G. B.:
1991, Sterane and Triterpane Biomarkers
in the Precambrian Nonesuch Formation,
North American Midcontinent Rift,
Geochem. Cosmochim. Acta 55, 911–916
[4] J.J.
Brocks, R.E. Summons, 8.03 -
Sedimentary Hydrocarbons, Biomarkers
for Early Life, In: Editors-in-Chief:
Heinrich D. Holland and Karl K.
Turekian, Editor(s)-in-Chief, Treatise
on Geochemistry, Pergamon, Oxford,
2003, Pages 63-115, ISBN 9780080437514,
10.1016/B0-08-043751-6/08127-5. (http:/
/www.sciencedirect.com/science/article/p
ii/B0080437516081275)

[5] Moldowan, J. Michael et al.
“Chemostratigraphic reconstruction of
biofacies: Molecular evidence linking
cyst-forming dinoflagellates with
pre-Triassic ancestors.” Geology 24.2
(1996): 159 -162.
http://geology.geoscienceworld.org/con
tent/24/2/159.abstract

AND http://geology.gsapubs.org/content/
24/2/159.full.pdf
[6] Raven, Evert, Eichhorn, "Biology of
Plants", (New York: Worth Publishers,
1992). p98-99
 
[1] dino4: Dinoflagellates have an
armor shell made of plates of cellulose
(the same material as in paper or a
cotton shirt)
source: dino4=http://www.mbari.org/staff
/oreilly/schoolPresentation/oceancolor/d
inoflagellates.html


[2] Fig. 1. A consensus phylogeny of
eukaryotes. The vast majority of
characterized eukaryotes, with the
notable exception of major subgroups of
amoebae, can now be assigned to one of
eight major groups. Opisthokonts (basal
flagellum) have a single basal
flagellum on reproductive cells and
flat mitochondrial cristae (most
eukaryotes have tubular ones).
Eukaryotic photosynthesis originated in
Plants; theirs are the only plastids
with just two outer membranes.
Heterokonts (different flagellae) have
a unique flagellum decorated with
hollow tripartite hairs (stramenopiles)
and, usually, a second plain one.
Cercozoans are amoebae with filose
pseudopodia, often living with in tests
(hard outer shells), some very
elaborate (foraminiferans). Amoebozoa
are mostly naked amoebae (lacking
tests), often with lobose pseudopodia
for at least part of their life cycle.
Alveolates have systems of cortical
alveoli directly beneath their plasma
membranes. Discicristates have discoid
mitochondrial cristae and, in some
cases, a deep (excavated) ventral
feeding groove. Amitochondrial
excavates lack substantial molecular
phylogenetic support, but most have an
excavated ventral feeding groove, and
all lack mitochondria. The tree shown
is based on a consensus of molecular
(1-4) and ultrastructural (16, 17) data
and includes a rough indication of new
ciPCR ''taxa'' (broken black lines)
(7-11). An asterisk preceding the taxon
name indicates probable paraphyletic
group COPYRIGHTED
source: http://www.sciencemag.org/cgi/co
ntent/full/300/5626/1703

1,005,000,000 YBN
26
306) Earliest certain Stramenopiles
fossil a xanthophyte (or yellow-green
algae19 ): "Palaeovaucheria".20 21 22
23 24
FOOTNOTES
1. ^ "Xanthophyta." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 18 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/680191/Xanthophyta
>.
2. ^ Hermann, T. N. 1981. "Nitchatye
mikroorganizmy Lakhandin-skoi svity
reki Mai.", Paleontologicheskii
Zhurnal 1981(2):126- 131. English:
"Filamentous microorganisms in the
Lakhanda Formation on the Maya
River.", Paleontological Journal
1981(2):100- 107.
3. ^ Hermann, T. N., and
Timofeev, B. S. 1974. "Mitoz i
drevnikh vodoroslei.", Pp. 5-6 in
B. V. Timofeev, ed.
"Mikrofitofossilii Proterozoia i
Rannego", Paleozoia SSSR. Nauka,
Leningrad.
4. ^ A.H Knoll, E.J Javaux, D Hewitt,
and P Cohen, "Eukaryotic organisms in
Proterozoic oceans", Phil. Trans. R.
Soc. B June 29, 2006 361 (1470)
1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/citmgr?gca=ro
yptb;361/1470/1023

5. ^ Nicholas J. Butterfield, "A
Vaucheriacean Alga from the Middle
Neoproterozoic of Spitsbergen:
Implications for the Evolution of
Proterozoic Eukaryotes and the Cambrian
Explosion", Paleobiology , Vol. 30, No.
2 (Spring, 2004), pp. 231-252 Article
Stable URL:
http://www.jstor.org/stable/4096845
6. ^ Brown JW, Sorhannus U (2010) A
Molecular Genetic Timescale for the
Diversification of Autotrophic
Stramenopiles (Ochrophyta): Substantive
Underestimation of Putative Fossil
Ages. PLoS ONE 5(9): e12759.
doi:10.1371/journal.pone.0012759 http:/
/www.plosone.org/article/info%3Adoi%2F10
.1371%2Fjournal.pone.0012759

7. ^ "Xanthophyta." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 18 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/680191/Xanthophyta
>.
8. ^ Hermann, T. N. 1981. "Nitchatye
mikroorganizmy Lakhandin-skoi svity
reki Mai.", Paleontologicheskii
Zhurnal 1981(2):126- 131. English:
"Filamentous microorganisms in the
Lakhanda Formation on the Maya
River.", Paleontological Journal
1981(2):100- 107.
9. ^ Hermann, T. N., and
Timofeev, B. S. 1974. "Mitoz i
drevnikh vodoroslei.", Pp. 5-6 in
B. V. Timofeev, ed.
"Mikrofitofossilii Proterozoia i
Rannego", Paleozoia SSSR. Nauka,
Leningrad.
10. ^ A.H Knoll, E.J Javaux, D Hewitt,
and P Cohen, "Eukaryotic organisms in
Proterozoic oceans", Phil. Trans. R.
Soc. B June 29, 2006 361 (1470)
1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/citmgr?gca=ro
yptb;361/1470/1023

11. ^ Nicholas J. Butterfield, "A
Vaucheriacean Alga from the Middle
Neoproterozoic of Spitsbergen:
Implications for the Evolution of
Proterozoic Eukaryotes and the Cambrian
Explosion", Paleobiology , Vol. 30, No.
2 (Spring, 2004), pp. 231-252 Article
Stable URL:
http://www.jstor.org/stable/4096845
12. ^ Brown JW, Sorhannus U (2010) A
Molecular Genetic Timescale for the
Diversification of Autotrophic
Stramenopiles (Ochrophyta): Substantive
Underestimation of Putative Fossil
Ages. PLoS ONE 5(9): e12759.
doi:10.1371/journal.pone.0012759 http:/
/www.plosone.org/article/info%3Adoi%2F10
.1371%2Fjournal.pone.0012759

13. ^ "Xanthophyta." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 18 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/680191/Xanthophyta
>.
14. ^ Hermann, T. N. 1981.
"Nitchatye mikroorganizmy
Lakhandin-skoi svity reki Mai.",
Paleontologicheskii Zhurnal
1981(2):126- 131. English:
"Filamentous microorganisms in the
Lakhanda Formation on the Maya
River.", Paleontological Journal
1981(2):100- 107.
15. ^ Hermann, T. N.,
and Timofeev, B. S. 1974. "Mitoz i
drevnikh vodoroslei.", Pp. 5-6 in
B. V. Timofeev, ed.
"Mikrofitofossilii Proterozoia i
Rannego", Paleozoia SSSR. Nauka,
Leningrad.
16. ^ A.H Knoll, E.J Javaux, D Hewitt,
and P Cohen, "Eukaryotic organisms in
Proterozoic oceans", Phil. Trans. R.
Soc. B June 29, 2006 361 (1470)
1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/citmgr?gca=ro
yptb;361/1470/1023

17. ^ Nicholas J. Butterfield, "A
Vaucheriacean Alga from the Middle
Neoproterozoic of Spitsbergen:
Implications for the Evolution of
Proterozoic Eukaryotes and the Cambrian
Explosion", Paleobiology , Vol. 30, No.
2 (Spring, 2004), pp. 231-252 Article
Stable URL:
http://www.jstor.org/stable/4096845
18. ^ Brown JW, Sorhannus U (2010) A
Molecular Genetic Timescale for the
Diversification of Autotrophic
Stramenopiles (Ochrophyta): Substantive
Underestimation of Putative Fossil
Ages. PLoS ONE 5(9): e12759.
doi:10.1371/journal.pone.0012759 http:/
/www.plosone.org/article/info%3Adoi%2F10
.1371%2Fjournal.pone.0012759

19. ^ "Xanthophyta." Encyclopædia
Britannica. Encyclopædia Britannica
Online. Encyclopædia Britannica Inc.,
2012. Web. 18 Mar. 2012.
<http://www.britannica.com/EBchecked/topi
c/680191/Xanthophyta
>.
20. ^ Hermann, T. N. 1981.
"Nitchatye mikroorganizmy
Lakhandin-skoi svity reki Mai.",
Paleontologicheskii Zhurnal
1981(2):126- 131. English:
"Filamentous microorganisms in the
Lakhanda Formation on the Maya
River.", Paleontological Journal
1981(2):100- 107.
21. ^ Hermann, T. N.,
and Timofeev, B. S. 1974. "Mitoz i
drevnikh vodoroslei.", Pp. 5-6 in
B. V. Timofeev, ed.
"Mikrofitofossilii Proterozoia i
Rannego", Paleozoia SSSR. Nauka,
Leningrad.
22. ^ A.H Knoll, E.J Javaux, D Hewitt,
and P Cohen, "Eukaryotic organisms in
Proterozoic oceans", Phil. Trans. R.
Soc. B June 29, 2006 361 (1470)
1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/citmgr?gca=ro
yptb;361/1470/1023

23. ^ Nicholas J. Butterfield, "A
Vaucheriacean Alga from the Middle
Neoproterozoic of Spitsbergen:
Implications for the Evolution of
Proterozoic Eukaryotes and the Cambrian
Explosion", Paleobiology , Vol. 30, No.
2 (Spring, 2004), pp. 231-252 Article
Stable URL:
http://www.jstor.org/stable/4096845
24. ^ Brown JW, Sorhannus U (2010) A
Molecular Genetic Timescale for the
Diversification of Autotrophic
Stramenopiles (Ochrophyta): Substantive
Underestimation of Putative Fossil
Ages. PLoS ONE 5(9): e12759.
doi:10.1371/journal.pone.0012759 http:/
/www.plosone.org/article/info%3Adoi%2F10
.1371%2Fjournal.pone.0012759

25. ^ A.H Knoll, E.J Javaux, D Hewitt,
and P Cohen, "Eukaryotic organisms in
Proterozoic oceans", Phil. Trans. R.
Soc. B June 29, 2006 361 (1470)
1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/citmgr?gca=ro
yptb;361/1470/1023

26. ^ A.H Knoll, E.J Javaux, D Hewitt,
and P Cohen, "Eukaryotic organisms in
Proterozoic oceans", Phil. Trans. R.
Soc. B June 29, 2006 361 (1470)
1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/citmgr?gca=ro
yptb;361/1470/1023

(Lakhanda Group) Siberia25  
[1] [t Apparently this is not
Paleovaucheria (f) Segmentothallus
asperus from the Lakhanda succession, a
large uniseriate filament; From: A.H
Knoll, E.J Javaux, D Hewitt, and P
Cohen, ''Eukaryotic organisms in
Proterozoic oceans'', Phil. Trans. R.
Soc. B June 29, 2006 361 (1470)
1023-1038;
doi:10.1098/rstb.2006.1843 http://rstb.
royalsocietypublishing.org/citmgr?gca=ro
yptb;361/1470/1023 COPYRIGHTED
source: http://rstb.royalsocietypublishi
ng.org/content/361/1470/1023/F3.large.jp
g


[2] Vaucheria has siphonaceous,
coenocytic filaments that can form
feltlike mats, earning it the nickname
''water felt''. Cytokinesis does not
usually follow mitosis, so the cells
retain multiple nuclei. The thallus has
cross walls only where gametes or
zoospores were produced, and may be
branched. The cytoplasm of Vaucheria
is pushed to the cell periphery by
large vacuoles, and contains many
nuclei and discoid plastids. The
plastids can change their orientation
in response to changes in light levels.
The large cells rely on cytoplasmic
streaming to move materials around as
needed. Researchers have found
fossils in one billion- year-old
Siberian deposits that are very similar
to Vaucheria, indicating that the genus
has been evolving for quite some time.
Over 70 species are known to
science. UNKNOWN
source: http://silicasecchidisk.conncoll
.edu/Pics/Other%20Algae/Other_jpegs/Vauc
heria_Key252.jpg

1,000,000,000 YBN
2
154)
FOOTNOTES
1. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
2. ^ Russell F. Doolittle,
Da-Fei Feng, Simon Tsang, Glen Cho,
Elizabeth Little, "Determining
Divergence Times of the Major Kingdoms
of Living Organisms with a Protein
Clock", Science, (1996).
  
1,000,000,000 YBN
19 20
223)
FOOTNOTES
1. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
2. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
3. ^ "Chytridiomycetes." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/chytridiomy
cetes-1

4. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
5. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
6. ^
http://www.catalogueoflife.org/annual-ch
ecklist/2008/browse_taxa.php?path=0,5597
&selected_taxon=5597

7. ^ "Chytridiomycetes." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/chytridiomy
cetes-1

8. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
9. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
10. ^
http://www.catalogueoflife.org/annual-ch
ecklist/2008/browse_taxa.php?path=0,5597
&selected_taxon=5597

11. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
12. ^
"Chytridiomycetes." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 24 Dec. 2011.
http://www.answers.com/topic/chytridiomy
cetes-1

13. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
14. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
15. ^
http://www.catalogueoflife.org/annual-ch
ecklist/2008/browse_taxa.php?path=0,5597
&selected_taxon=5597

16. ^ S. Blair Hedges, "The Origin and
Evolution of Model Organisms", Nature
Reviews Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
17. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
18. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849;
doi:10.1038/nrg929, (2002).
19. ^ S. Blair
Hedges, "The Origin and Evolution of
Model Organisms", Nature Reviews
Genetics 3, 838-849 (2002);
doi:10.1038/nrg929, (2002). (1460mybn)
20. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000mybn)

MORE INFO
[1]
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=71577&tree=0.1

[2]
http://en.wikipedia.org/wiki/Chytridiomy
cota

[3]
http://howjsay.com/index.php?word=chytri
diomycetes&submit=Submit

 
[1] Chytrids (Chytridiomycota): The
Primitive Fungi These fungi are
mostly aquatic, are notable for having
a flagella on the cells (a flagella is
a tail, somewhat like a tail on a sperm
or a pollywog), and are thought to be
the most primitive type of
fungi. actual photo comes
from: http://www.csupomona.edu/~jcclark
/classes/bot125/resource/graphics/chy_al
l_sph.html
source: http://www.davidlnelson.md/Cazad
ero/Fungi.htm


[2] Chytridiomycota - Blastocladiales
- zoospore of Allomyces (phase contrast
illumination) X 2000
source: http://www.mycolog.com/chapter2b
.htm

1,000,000,000 YBN
18
324) Protists (Mesomycetozoea
{me-ZO-mI-SE-TO-ZO-u13 } (also called
DRIPS).14

Mesomycetozoea are in the protist
Phylum Choanozoa (which includes
Choanoflagellates).15 This phylum
contains the first protozoans
(Choanoflagellates), thought to be the
ancestor of sponges.16

DRIP is an acronym for a small group of
parasites mostly of fish and other
freshwater animals.17
FOOTNOTES
1. ^
http://howjsay.com/index.php?word=mesomy
cetozoea&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^
http://howjsay.com/index.php?word=mesomy
cetozoea&submit=Submit

4. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
5. ^
http://howjsay.com/index.php?word=mesomy
cetozoea&submit=Submit

6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
8. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004).
9. ^
http://howjsay.com/index.php?word=mesomy
cetozoea&submit=Submit

10. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
11. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
12. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004).
13. ^
http://howjsay.com/index.php?word=mesomy
cetozoea&submit=Submit

14. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
15. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
16. ^ Richard Dawkins,
"The Ancestor's Tale", (Boston, MA:
Houghton Mifflin Company, 2004).
17. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
18. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). {1000 MYBN (end of
Mesoproterozoic}

MORE INFO
[1] Shalchian-Tabrizi K, Minge
MA, Espelund M, Orr R, Ruden T, et al.
2008 Multigene Phylogeny of Choanozoa
and the Origin of Animals. PLoS ONE
3(5): e2098.
doi:10.1371/journal.pone.0002098
[2] Leonel Mendoza, John W. Taylor, and
Libero Ajello, "THE CLASS
MESOMYCETOZOEA: A Heterogeneous Group
of Microorganisms at the Animal-Fungal
Boundary", Annual Review of
Microbiology October 2002, Vol. 56:
315-344. http://www.annualreviews.org/d
oi/full/10.1146/annurev.micro.56.012302.
160950

 
[1] Ichthyophonus, a fungus-like
protistan that occurs in high
prevalence in Pacific Ocean perch
(Sebastes aultus) and yellowtail
rockfish (Sebastes flavedus). Note the
parasite forms branching hyphae-like
structures. Ichthyophonus hoferi has
caused massive mortalities in herring
in the Atlantic ocean, and has recently
been reported to cause disease in wild
Pacific herring from Washington through
Alaska. COPYRIGHTED EDU
source: http://oregonstate.edu/dept/salm
on/projects/images/16Ichthyophonus.jpg


[2] Microscopic appearence of the
organism is dependent on its stage of
development. The stages include (1)
spore at ''resting'' stage, (2)
germinating spore, (3) hyphal
stage. It is believed that there are
two forms of Ichthyophonus, both
belonging to one genus. One of them is
known as the ''salmon'' form, occuring
in freshwater and cold-preferring sea
fishes: this form is characterized by
its ability to produce long tubulose
germ hyphae. The other is called the
''aquarium fish'' form, typical of the
tropical freshwater fishes. This form
is completely devoid of hyphae.
Developmental cycle of Ichthyophonus
hoferi: 1-5 - development of
''daughter'' spores, 7-11 - development
of resting spore from the ''daughter''
spore, 12-19 - development of resting
spore by fragmentation. COPYRIGHTED
source: http://www.fao.org/docrep/field/
003/AC160E/AC160E02.htm

985,000,000 YBN
33 34 35
309) Protist Phylum Oomycota
{Ou-mI-KO-Tu24 } evolves according to
genetic comparison, (includes the Class
Oomycetes25 ) (Water molds).26 27 28 29


Oomycetes (Water molds), with about 580
species, vary from unicellular, to
multicellular highly brached
filamentous forms.30

Oomycetes have mitochondria with
tubular christae.31

Oomycetes grow by closed (or nearly
closed) mitosis with pairs of
centrioles near the poles.32
FOOTNOTES
1. ^
http://howjsay.com/index.php?word=oomyco
ta&submit=Submit

2. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
3. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
4. ^ Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000).
http://www.sciencemag.org/content/290/
5493/972.full

5. ^ http://sn2000.taxonomy.nl/
6. ^
http://howjsay.com/index.php?word=oomyco
ta&submit=Submit

7. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
8. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
9. ^ Sandra L. Baldauf, A. J. Roger, I.
Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
10. ^
http://sn2000.taxonomy.nl/
11. ^
http://howjsay.com/index.php?word=oomyco
ta&submit=Submit

12. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life",
2009. http://www.timetree.org/book.php
13. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
14. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
15. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
16. ^
http://sn2000.taxonomy.nl/
17. ^
http://howjsay.com/index.php?word=oomyco
ta&submit=Submit

18. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life",
2009. http://www.timetree.org/book.php
19. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
20. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
21. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
22. ^
http://sn2000.taxonomy.nl/
23. ^ Raven, Evert, Eichhorn, "Biology
of Plants", (New York: Worth
Publishers, 1992).
24. ^
http://howjsay.com/index.php?word=oomyco
ta&submit=Submit

25. ^ S. Blair Hedges and Sudhir Kumar,
"The TimeTree of Life",
2009. http://www.timetree.org/book.php
26. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
27. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
28. ^ Sandra L. Baldauf, A. J. Roger,
I. Wenk-Siefert, W. F. Doolittle, "A
Kingdom-Level Phylogeny of Eukaryotes
Based on Combined Protein Data",
Science, Vol 290, num 5493, p 972,
(2000). has heterkonts before
ciliophora and apicomplexa branch
29. ^
http://sn2000.taxonomy.nl/
30. ^ Raven, Evert, Eichhorn, "Biology
of Plants", (New York: Worth
Publishers, 1992).
31. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P2734&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

32. ^ Michael Sleigh, "Protozoa and
Other Protists", (London; New York:
Edward Arnold, 1989).
33. ^ S. Blair Hedges
and Sudhir Kumar, "The TimeTree of
Life", 2009,
p117-118. http://www.timetree.org/book.
php
{985}
34. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1973mybn)
35. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004). (1600mybn)

MORE INFO
[1]
http://www.ilmyco.gen.chicago.il.us/Term
s/coeno128.html#coeno128

[2] "Coenocyte". Wikipedia. Wikipedia,
2008.
http://en.wikipedia.org/wiki/Coenocyte
[3]
http://users.rcn.com/jkimball.ma.ultrane
t/BiologyPages/P/Protists.html#Water_Mol
ds

[4]
http://kentsimmons.uwinnipeg.ca/16cm05/1
116/16protists.htm

 
[1] Figure 2 from: Sandra L. Baldauf,
A. J. Roger, I. Wenk-Siefert, W. F.
Doolittle, ''A Kingdom-Level Phylogeny
of Eukaryotes Based on Combined Protein
Data'', Science, Vol 290, num 5493, p
972, (2000).
http://www.sciencemag.org/content/290/
5493/972.full Figure 2 Single-gene
phylogenies support subsets of the
combined protein tree. (A) A summary of
the tree in Fig. 1is shown with
supergroups indicated beside brackets
to the right. Multi-taxon represented
clusters are given as triangles, with
height proportional to number of taxa
and width proportional to averaged
overall branch length (1) compensated
for missing data (47). (B) Published
support for the numbered nodes in (A)
is shown for commonly used molecular
phylogenetic markers grouped as (a)
ribosomal RNAs, (b) proteins not used
in the current analysis, (c) proteins
used in the current analysis, and (d)
the combined data (Fig. 1). These
markers are, from left to right, SSU
[SSU rRNA (1–4)], LSU [LSU rRNA
(19)], LSU+SSU [combined LSU and SSU
rRNA (48)], EF-2 (10), V/A-ATPases
[vacuolar ATPases (49)], HSP70-cy
[cytosolic 70-kD heat shock protein
(50)], mito [combined mitochondrial
proteins (51)], RPB1 (52), actin (8,
16, 53), α-tubulin (8, 54), β-tubulin
(8, 54), EF-1α (15, 20), and combined
(Fig. 1). Rejected nodes are indicated
in pink and accepted nodes in green,
with checked circles indicating BP < 70% and solid circles indicating BP >
70%. COPYRIGHTED
source: http://www.sciencemag.org/conten
t/290/5493/972/F2.large.jpg


[2] Fig. 1. A consensus phylogeny of
eukaryotes. The vast majority of
characterized eukaryotes, with the
notable exception of major subgroups of
amoebae, can now be assigned to one of
eight major groups. Opisthokonts (basal
flagellum) have a single basal
flagellum on reproductive cells and
flat mitochondrial cristae (most
eukaryotes have tubular ones).
Eukaryotic photosynthesis originated in
Plants; theirs are the only plastids
with just two outer membranes.
Heterokonts (different flagellae) have
a unique flagellum decorated with
hollow tripartite hairs (stramenopiles)
and, usually, a second plain one.
Cercozoans are amoebae with filose
pseudopodia, often living with in tests
(hard outer shells), some very
elaborate (foraminiferans). Amoebozoa
are mostly naked amoebae (lacking
tests), often with lobose pseudopodia
for at least part of their life cycle.
Alveolates have systems of cortical
alveoli directly beneath their plasma
membranes. Discicristates have discoid
mitochondrial cristae and, in some
cases, a deep (excavated) ventral
feeding groove. Amitochondrial
excavates lack substantial molecular
phylogenetic support, but most have an
excavated ventral feeding groove, and
all lack mitochondria. The tree shown
is based on a consensus of molecular
(1-4) and ultrastructural (16, 17) data
and includes a rough indication of new
ciPCR ''taxa'' (broken black lines)
(7-11). An asterisk preceding the taxon
name indicates probable paraphyletic
group COPYRIGHTED
source: http://www.sciencemag.org/cgi/co
ntent/full/300/5626/1703

965,000,000 YBN
2
155)
FOOTNOTES
1. ^ Russell F. Doolittle, Da-Fei
Feng, Simon Tsang, Glen Cho, Elizabeth
Little, "Determining Divergence Times
of the Major Kingdoms of Living
Organisms with a Protein Clock",
Science, (1996).
2. ^ Russell F. Doolittle,
Da-Fei Feng, Simon Tsang, Glen Cho,
Elizabeth Little, "Determining
Divergence Times of the Major Kingdoms
of Living Organisms with a Protein
Clock", Science, (1996).
  
900,000,000 YBN
30 31 32 33
326)
FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
2. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=114293

3. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
4. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P2691&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

5. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano)
6. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000 drips and 900 choano)
7. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
8. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=114293

9. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
10. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P2691&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

11. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano)
12. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000 drips and 900 choano)
13. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p502.
14. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004).
15. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=114293

16. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
17. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P2691&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

18. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano)
19. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000 drips and 900 choano)
20. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p502.
21. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p502.
22. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004).
23. ^
http://sn2000.taxonomy.nl/Taxonomicon/Ta
xonTree.aspx?id=114293

24. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
25. ^
http://microscope.mbl.edu/scripts/protis
t.php?func=integrate&myID=P2691&chinese_
flag=&system=&version=&documentID=&exclu
deNonLinkedIn=&imagesOnly=

26. ^ S Blair Hedges, Jaime E Blair,
Maria L Venturi and Jason L Shoe, "A
molecular timescale of eukaryote
evolution and the rise of complex
multicellular life", BMC Evolutionary
Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano)
27. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000 drips and 900 choano)
28. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p502.
29. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p502.
30. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). (1000 drips and 900 choano) {900
MYBN}
31. ^ Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007. {900 MYBN}
32. ^ S.
Blair Hedges and Sudhir Kumar, "The
TimeTree of Life", 2009,
p117-118. http://www.timetree.org/book.
php
{1020 mybn}
33. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
(1513 (drips?) and 1450 choano) {1450
mybn}

MORE INFO
[1] Elizabeth Pennisi, "Drafting
a Tree", Science, (2003) .
[2]
"Ichthyosporea". Wikipedia. Wikipedia,
2008.
http://species.wikipedia.org/wiki/Ichthy
osporea

 
[1] Choanoflagellate single cell
(thecate) UNKNOWN
source: http://behance.vo.llnwd.net/prof
iles22/483113/projects/1558429/6ea555ab5
457e21432def0f2e6b83fe3.jpg


[2] Salpingoeca: Cells solitary or
colonial with a distinct and firm
sheath or theca usually as a cup either
sessile or with a pedicel; theca
colourless or amber; contractile
vacuoles posterior in freshwater
specie; in freshwater, brackish, and
marine habitats. Record information:
Salpingoeca (sal-ping-go-eek-a), a
collar flagellate (choanoflagellate) -
all of which have a single anterior
flagellum surrounded by a collar of
very fine pseudopodia (in cross-section
the collar seems like two arms, one on
either side of the flagellum). The
flagellum beats drawing water through
the collar and bacteria and other small
particles are trapped and then
ingested. Believed to be the source
group of the sponges and the metazoa.
Salpingoeca has an organic lorica.
Phase contrast. This picture was
taken by David Patterson, Linda Amaral
Zettler and Virginia Edgcomb of
material from the salt marsh at Little
Sippewissett (Massachusetts, USA) in
Autumn, 2000 and in Spring and summer,
2001. NONCOMMERCIAL USE
source: http://microscope.mbl.edu/script
s/microscope.php?func=imgDetail&imageID=
746

900,000,000 YBN
15 16 17 18
6281)
FOOTNOTES
1. ^
http://www.howjsay.com/index.php?word=rh
izaria&submit=Submit

2. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
3. ^
http://www.howjsay.com/index.php?word=rh
izaria&submit=Submit

4. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
5. ^
http://www.howjsay.com/index.php?word=rh
izaria&submit=Submit

6. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
7. ^ "Radiolaria." McGraw-Hill
Dictionary of Scientific and Technical
Terms. McGraw-Hill Companies, Inc.,
2003. Answers.com 28 Mar. 2012.
http://www.answers.com/topic/radiolaria-
2

8. ^ "Rhizaria."Answers.com 28 Mar.
2012.
http://www.answers.com/topic/rhizaria
9. ^
http://www.howjsay.com/index.php?word=rh
izaria&submit=Submit

10. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004).
11. ^ "Radiolaria."
McGraw-Hill Dictionary of Scientific
and Technical Terms. McGraw-Hill
Companies, Inc., 2003. Answers.com 28
Mar. 2012.
http://www.answers.com/topic/radiolaria-
2

12. ^ "Rhizaria."Answers.com 28 Mar.
2012.
http://www.answers.com/topic/rhizaria
13. ^ Cavalier-Smith, Thomas (2002).
"The phagotrophic origin of eukaryotes
and phylogenetic classification of
Protozoa". International Journal of
Systematic and Evolutionary
Microbiology 52 (2): 297–354. ISSN
1466-5026. PMID 11931142. Retrieved
2007-06-08. http://ijs.sgmjournals.org/
cgi/content/abstract/52/2/297

14. ^
http://www.unige.ch/sciences/biologie/bi
ani/msg/Amoeboids/Rizharia.html

Medlin, L. , Kooistra, W. , Potter, D.
, Saanders, G. and Wandersen, R.
(1997): Phylogenetic relationships of
the 'golden algae' (haptophytes,
heterokont chromophytes) and their
plastids , The origin of the algae and
their plastids (D Bhattacharya, ed )
Plant systematics and evolution (Suppl
) http://epic.awi.de/2100/
AND http://epic.awi.de/2100/1/Med1997c.
pdf {900 my}
16. ^
http://www.timetree.org/index.php?taxon_
a=rhizaria&taxon_b=haptophyta&submit=Sea
rch
{900 my}
17. ^ Cédric Berney and Jan
Pawlowski, "A molecular time-scale for
eukaryote evolution recalibrated with
the continuous microfossil record",
Proc. R. Soc. B August 7, 2006
273:1867-1872;
doi:10.1098/rspb.2006.3537 http://rspb.
royalsocietypublishing.org/content/273/1
596/1867.short
{804 my} {754 my}
18. ^
Richard Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004). {1600 my}

MORE INFO
[1] Moreira D, von der Heyden S,
Bass D, López-García P, Chao E,
Cavalier-Smith T (July 2007). "Global
eukaryote phylogeny: Combined small-
and large-subunit ribosomal DNA trees
support monophyly of Rhizaria, Retaria
and Excavata". Mol. Phylogenet. Evol.
44 (1): 255–66.
http://linkinghub.elsevier.com/retriev
e/pii/S1055-7903(06)00433-7

[2]
http://www.timetree.org/index.php?taxon_
a=rhizaria&taxon_b=alveolates&submit=Sea
rch

[3] Hackett JD, Yoon HS, Butterfield
NJ, Sanderson MJ, Bhattacharya D,
"Plastid endosymbiosis: Sources and
timing of the major events.", in:
Falkowski P, Knoll A, editors.
"Evolution of primary producers in the
sea.", Elsevier; 2007, p120
 
[1] Figure : Maximum likelihood
phylogeny of Rhizaria inferred from SSU
rRNA gene sequences using the GTR+G+I
model of evolution. UNKNOWN
source: http://www.unige.ch/sciences/bio
logie/biani/msg/Amoeboids/Rhizaria_large
.jpg


[2] Figure 1 from: Keeling, Patrick
J. et al. “The tree of eukaryotes.”
Trends in Ecology & Evolution 20.12
(2005):
670-676. http://www.sciencedirect.com/s
cience/article/pii/S0169534705003046
source: http://www.sciencedirect.com/cac
he/MiamiImageURL/1-s2.0-S016953470500304
6-gr1.jpg/0?wchp=dGLbVBA-zSkWz

855,000,000 YBN
21 22
286) In sponges all cells are
"totipotent", which means that every
cell is capable of becoming any of the
sponge's different cell types. Any
isolated cell is capable of growing an
entire new sponge. In sponges there is
no distinction between germ line and
soma.18

Some people think that multicellular
organisms arose at least six times: in
animals, fungi and several groups of
algae.19 20
FOOTNOTES
1. ^ Richard Dawkins, "The Ancestor's
Tale", (Boston, MA: Houghton Mifflin
Company, 2004), p497-506.
2. ^ S Blair Hedges,
Jaime E Blair, Maria L Venturi and
Jason L Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
3. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
4. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-506.
5. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004).
6. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
7. ^ Richard
Dawkins, "The Ancestor's Tale",
(Boston, MA: Houghton Mifflin Company,
2004), p497-506.
8. ^ S Blair Hedges, Jaime E
Blair, Maria L Venturi and Jason L
Shoe, "A molecular timescale of
eukaryote evolution and the rise of
complex multicellular life", BMC
Evolutionary Biology 2004, 4:2
doi:10.1186/1471-2148-4-2, (2004).
9. ^ Richard
Cowen, "History of Life", (Malden, MA:
Blackwell, 2005).
10. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-506.
11. ^ S Blair
Hedges, Jaime E Blair, Maria L Venturi
and Jason L Shoe, "A molecular
timescale of eukaryote evolution and
the rise of complex multicellular
life", BMC Evolutionary Biology 2004,
4:2 doi:10.1186/1471-2148-4-2,
(2004).
12. ^ Richard Cowen, "History of Life",
(Malden, MA: Blackwell, 2005).
13. ^ Shuhai
Xiao, Yun Zhang, Andrew H. Knoll,
"Three-dimensional preservation of
algae and animal embryos in a
Neoproterozoic phosphorite", Nature
391, 553-558 (5 February
1998) http://www.nature.com/cgi-taf/Dyn
aPage.taf?file=/nature/journal/v391/n666
7/full/391553a0_fs.html

14. ^ Buss, L. W. The Evolution of
Individuality (Princeton Univ. Press,
NJ, 1987).
15. ^ Richard Dawkins, "The
Ancestor's Tale", (Boston, MA: Houghton
Mifflin Company, 2004), p497-506.
16. ^ Shuhai
Xiao, Yun Zhang, Andrew H. Knoll,
"Three-dimensional preservation of
algae and animal embryos in a
Neoproterozoic phosphorite", Nature
391, 553-558 (5 February
1998) http://www.nature.com/cgi-taf/Dyn
aPage.taf?file=/nature/journal/v391/n666
7/full/391553a0_fs.html

17. ^ Buss, L. W. The Evolution of
Individuality (Princeton Univ. Press,
NJ, 1987).
18. ^ Richard Dawkins, "The
Ancestor's Ta